\(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{2x^2+2-3}=1\)1
giải phương trình trên
Giải phương trình
\(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)\(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)
1) Phương trình 3x-5x+5= -8 có nghiệm là?
2) Giá trị của b để phương trình 3x+b=0 có nghiệm x=-2 là?
3) Phương trình 2x+k=x-1 nhận x=2 là nghiệm khi k=?
4) Phương trình m(x-1)=5-(m-1)x vô nghiệm nếu?
5) Phương trình \(x^2\)-4x+3= 0 có nghiệm là?
6) Phương trình (2x-3)(3x+2)=6x(x-50)+44 có nghiệm là?
7) Tập nghiệm của phương trình \(\frac{5x+4}{10}+\frac{2x+5}{6}+\frac{x-7}{15}-\frac{x+1}{30}\)là?
8) Ngiệm của phương trình\(\frac{5x-3}{6}-x+1=1-\frac{x+1}{3}\)là?
9) Nghiệm của phương trình -8(1,3-2x)=4(5x+1) là?
10) Nghiệm của phương trình \(\frac{8x+5}{4}-\frac{3x+1}{2}=\frac{2x+1}{2}+\frac{x+4}{4}\)là?
11) Nghiệm của phương trình \(\frac{2\left(x+6\right)}{3}+\frac{x+13}{2}-\frac{5\left(x-1\right)}{6}+\frac{x+1}{3}+11\)là?
Help me:(((
Ai làm đc câu nào thì làm giúp mình với ạ, cảm ơn trc:(((
\(1,3x-5x+5=-8\)
\(\Leftrightarrow-2x+5+8=0\)
\(\Leftrightarrow-2x=-13\)
\(\Leftrightarrow x=\frac{13}{2}\)
Giải phương trình:
a) \(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{x^2+2x-3}=1\)
b) \(\frac{x^2+2x+7}{\left(x+1\right)^2+2}=x^2+2x+4\)
c) \(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x+2}=1\)
a/ Đơn giản, phân tích mẫu số thứ 3 thành nhân tử rồi quy đồng, ko có gì khó cả, chắc bạn tự làm được
b/ Đặt \(\left(x+1\right)^2=t\ge0\)
\(\frac{t+6}{t+2}=t+3\Leftrightarrow t+6=\left(t+2\right)\left(t+3\right)\)
\(\Leftrightarrow t^2+4t=0\Rightarrow\orbr{\begin{cases}t=0\\t=-4\left(l\right)\end{cases}}\) \(\Rightarrow x=-1\)
c/ ĐKXĐ: bla bla bla...
Nhận thây \(x=0\) không phải nghiệm, phương trình tương đương:
\(\frac{2}{3x+\frac{2}{x}-1}-\frac{7}{3x+\frac{2}{x}+5}=1\)
Đặt \(3x+\frac{2}{x}-1=t\)
\(\frac{2}{t}-\frac{7}{t+6}=1\)
\(\Leftrightarrow2\left(t+6\right)-7t=t\left(t+6\right)\)
\(\Leftrightarrow t^2+11t-12=0\Rightarrow\orbr{\begin{cases}t=1\\t=-12\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x+\frac{2}{x}-1=1\\3x+\frac{2}{x}-1=-12\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}3x^2-2x+2=0\\3x^2+11x+2=0\end{cases}}\)
Bấm máy
Bài 2: Giải phương trình:
a) \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\)
b) \(\frac{3x-1-\frac{x-1}{2}}{3}-\frac{2x+\frac{1-2x}{3}}{2}=\frac{\frac{3x-1}{2}-6}{5}\)
Giải các phương trình sau:
a) \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\)
b) \(\frac{3x-1-\frac{x-1}{2}}{3}-\frac{2x+\frac{1-2x}{3}}{2}=\frac{\frac{3x-1}{2}}{5}\)
khó quá mk mới học lớp 6 nên k giải đc thông cảm cho mk nha
quy dong tung phan thuc mot di ban
Giải các phương trình sau
a, \(\frac{x+5}{3}-\frac{x-3}{5}=\frac{5}{x-3}-\frac{3}{x+5}\)
b,\(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{x^2+2x+3}\)
c,\(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x+2}=1\)
Các bạn giúp mk nha
\(\Leftrightarrow\frac{5\left(x+5\right)-3\left(x-3\right)}{15}=\frac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)
\(\Leftrightarrow\frac{2x+34}{15}=\frac{2x+34}{x^2+2x-15}\Leftrightarrow\orbr{\begin{cases}2x+34=0\\x^2+2x-15=15\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-17\\x^2+2x-30=0\end{cases}}\)
Từ đó tìm được \(S=\left\{-17;\sqrt{31}-1;-\sqrt{31}-1\right\}\)
Giải các phương trình.
a) \(\frac{2.\left(1-3x\right)}{5}-\frac{2+3x}{10}=7-\frac{3.\left(2x+1\right)}{4}\)b) \(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)
c) 3x-5=7
d) \(\frac{5}{x+3}=\frac{3}{x-1}\)
e) -2x+14=0
f) 2x.(x-3)+5.(x-3)=0
g) (x2-4)-(x-2).(3-2x)=0
h) 2x3+6x2=x2+3x
Giải phương trình chứa ẩn ở mẫu
a) \(\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}\)
b) \(\frac{3x}{x^2+x+1}+\frac{8x}{x^2+2x+1}+\frac{x}{x^2+3x+1}=\frac{16}{5}\)
a) \(\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}\)
Đặt \(x^2-2x+3=t\left(t\ge2\right)\), khi đó phương trình trở thành:
\(\frac{1}{t-1}+\frac{2}{t}=\frac{6}{t+1}\)
\(\Leftrightarrow\frac{t\left(t+1\right)+t^2-1}{\left(t-1\right)t\left(t+1\right)}=\frac{6t\left(t-1\right)}{\left(t-1\right)t\left(t+1\right)}\)
\(\Leftrightarrow t\left(t+1\right)+t^2-1=6t\left(t-1\right)\)
\(\Leftrightarrow2t^2+t-1=6t^2-6t\)
\(\Leftrightarrow-4t^2+7t-1=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=\frac{7+\sqrt{33}}{8}\\t=\frac{7-\sqrt{33}}{8}\end{cases}}\left(ktmđk\right)\)
Vậy phương trình vô nghiệm.
1) Giải các phương trình:
a) \(\frac{x-3}{5}-\frac{2x-1}{10}=\frac{x+1}{2}+\frac{1}{4}\)
b)\(\frac{x+3}{2}-\frac{2-1}{3}-1=\frac{x+5}{6}\)
c)\(\frac{x-1}{4}-\frac{5-2x}{9}=3x-\frac{2}{3}\)
d)\(\frac{2x-1}{4}+\frac{x-3}{3}=\frac{4x-2}{3}-\frac{6x+7}{12}\)
e)\(\frac{3x-2}{5}+\frac{x-1}{9}=\frac{14x-3}{15}-\frac{2x+1}{9}\)
\(\frac{x-3}{5}-\frac{2x-1}{10}=\frac{x+1}{2}+\frac{1}{4}\)
\(< =>\frac{\left(x-3\right).4}{20}-\frac{\left(2x-1\right).2}{20}=\frac{\left(x+1\right).10}{20}+\frac{5}{20}\)
\(< =>4x-12-4x+2=10x+10+5\)
\(< =>10x=-10-10-5=-25\)
\(< =>x=-\frac{25}{10}=-\frac{5}{2}\)
\(\frac{x+3}{2}-\frac{2x-1}{3}-1=\frac{x+5}{5}\)
\(< =>\frac{\left(x+3\right).15}{30}-\frac{\left(2x-1\right).10}{30}-\frac{30}{30}=\frac{\left(x+5\right).5}{30}\)\(< =>15x+45-20x+10-30=5x+25\)
\(< =>-5x+25=5x+25< =>10x=0< =>x=0\)
\(\frac{x-1}{4}-\frac{5-2x}{9}=3x-\frac{2}{3}\)
\(< =>\frac{\left(x-1\right).9}{36}-\frac{\left(5-2x\right).4}{36}=\frac{3x.36}{36}-\frac{2.12}{36}\)
\(< =>\left(x-1\right).9-\left(5-2x\right).4=108x-24\)
\(< =>9x-9-20+8x=108x-24\)
\(< =>108x-17x=-29+24\)
\(< =>91x=-5< =>x=-\frac{5}{91}\)