Những câu hỏi liên quan
TV
Xem chi tiết
DH
Xem chi tiết
CH
24 tháng 7 2017 lúc 15:47

Do \(a=1\times2\times3\times...\times50\) nên a chia hết cho 2, 3, 4, ..., 50 và \(a>50\)

Vậy thì áp dụng tính chất chia hết của một tổng ta có:

\(a+2>2\) và a + 2 chia hết cho 2. Vậy a + 2 là hợp số.

\(a+3>3\) và a + 3 chia hết cho 3. Vậy a + 3 là hợp số.

Tương tự ta có a + 4, a + 5, ... a + 50 đều là các hợp số.

Bình luận (0)
H24
25 tháng 7 2017 lúc 17:46

Vì a = 1 x 2 x 3 x ... x 50 

nên a \(⋮\)cho 2 ; 3 ; 4 ; 5 ... 50 và a > 50

Áp dụng tích chất ...

Ta có : a + 2 > 2 ; a + 2\(⋮\)2 => a + 2 sẽ là hợp số .

            a + 3 > 3 ; a + 3 \(⋮\)3  => a + 3 cũng là hợp số

Ta làm tương tự với các tổng còn lại 

Bình luận (0)
Xem chi tiết
CG
6 tháng 2 2018 lúc 5:11

giờ làm được chưa

Bình luận (0)
Xem chi tiết
PH
Xem chi tiết
CK
Xem chi tiết
CK
Xem chi tiết
CK
Xem chi tiết
NA
Xem chi tiết
H24
12 tháng 3 2018 lúc 22:12

=> \(A=\frac{\left(\frac{49}{1}+\frac{48}{2}+...+\frac{1}{49}\right)}{50}=\frac{49}{50.1}+\frac{48}{50.2}+...+\frac{1}{50.49}\)

=> \(A=\frac{50-1}{50.1}+\frac{50-2}{50.2}+...+\frac{50-49}{50.49}\)

=> \(A=\left(\frac{50}{50.1}+\frac{50}{50.2}+...+\frac{50}{50.49}\right)-\left(\frac{1}{50.1}+\frac{2}{50.2}+...+\frac{49}{50.49}\right)\)

=> \(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\) ( có 49 số 1/50 )

=> \(A=1+\frac{1}{2}+...+\frac{1}{49}-\frac{49}{50}=\left(1-\frac{49}{50}\right)+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\)

=> \(A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\)

Vậy A không phải là số tự nhiên 

Bình luận (0)