Tìm Max B = |2x-7|-|2x-11|
tìm min max /2x+5/+/2x-7/
Giá trị tuyệt đối à
Đặt A = |2x + 5| + |2x - 7|
=>A = |2x + 5| + |7 - 2x| \(\ge\)|2x + 5 + 7 - 2x| = |12| = 12
Dấu "=" xảy ra <=> (2x + 5)(7 - 2x) \(\ge\)0
=> -5/2 \(\le\)x \(\le\)7/2
Vậy MinA = 12 <=> -5/2 \(\le\)x \(\le\)7/2
1/ 3x2 + 6x - 11
2/ \(\frac{3x^2+2x+7}{3x^2+2x+1}\)
Tìm Max hoặc Min
1/
\(A=3x^2+6x-11\)\(=3\left(x^2+2x-\frac{11}{3}\right)\)\(=3\left[\left(x^2+2x+1\right)-\frac{14}{3}\right]\)\(=3\left(x+1\right)^2-14\ge-14\)
VẬY \(minA=-14\)khi \(x=-1\)
2/
\(B=\frac{3x^2+2x+7}{3x^2+2x+1}=1+\frac{6}{3x^2+2x+1}\)
Biểu thức \(\frac{6}{3x^2+2x+1}\)đạt GTLN khi \(3x^2+2x+1\)nhỏ nhất
Mà \(3x^2+2x+1\ge1\)nên GTNN của \(3x^2+2x+1\)là \(1\)
Ta có : \(maxB=1+6=7\) khi \(x=0\)
TK mk nka !!!!!
\(\Rightarrow B_{max}=1+\frac{6}{\frac{4}{3}}=\frac{11}{2}\Leftrightarrow x=-\frac{1}{3}\)
Ta có : 3x2 + 6x - 11
= 3x2 + 3.x.3 - 9 - 2
= (3x2 - 3)2
Mà (3x - 3)2 \(\le0\forall x\in R\)
Nên 3x2 + 6x - 11 min = 0 khi x = 1
Áp dụng bđt cô si tìm max
a) A=-x^2+2x+7
b) B=(x-y)(5+2x-2y)+14
Bài 1: Tìm min max của các bthuc sau
a,A=\(\sqrt{x-2}+\sqrt{6-x}\)
b,B= \(\sqrt{2x+3}+\sqrt{13-2x}\)
c.,C=\(\sqrt{3x+9}+\sqrt{7-3x}\)
a) \(A=\sqrt{x-2}+\sqrt{6-x}\)
\(\Rightarrow A^2=x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}\)
Ta có \(\sqrt{\left(x-2\right)\left(6-x\right)}\ge0,\forall x\)
Do đó \(A^2=4+2\sqrt{\left(x-2\right)\left(6-x\right)}\ge4\)
Mà A không âm \(\Leftrightarrow A\ge2\)
Dấu "=" \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
Áp dụng BĐT Bunhiacopxky:
\(A^2=\left(\sqrt{x-2}+\sqrt{6-x}\right)^2\le\left(x-2+6-x\right)\left(1+1\right)=4\cdot2=8\)
\(\Leftrightarrow A\le\sqrt{8}\)
Dấu "=" \(\Leftrightarrow x-2=6-x\Leftrightarrow x=4\)
Mấy bài còn lại y chang nha
Tick hộ nha
tìm min của x2-2x+7
4x^2+2x+9
tìm max của
-x^2 +2x +7
1/ \(x^2-2x+7\)
\(=x^2-\frac{1}{2}\cdot2x+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+7\)
\(=x^2-\frac{1}{2}\cdot2x+\left(\frac{1}{2}\right)^2-\frac{1}{4}+7\)
\(=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}+7\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{27}{4}\)
Có \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}\)
\(\Rightarrow GTNNx^2-2x+7=\frac{27}{4}\)
với \(\left(x-\frac{1}{2}\right)^2=0;x=\frac{1}{2}\)
2/ \(4x^2+2x+9\)
\(=\left(2x\right)^2+2\cdot2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+9\)
\(=\left(2x+\frac{1}{2}\right)^2-\frac{1}{4}+9\)
\(=\left(2x+\frac{1}{2}\right)^2+\frac{35}{4}\)
có \(\left(2x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(2x+\frac{1}{2}\right)^2+\frac{35}{4}\ge\frac{35}{4}\)
\(\Rightarrow GTNN4x^2+2x+9=\frac{35}{4}\)
với \(\left(2x+\frac{1}{2}\right)^2=0;x=-\frac{1}{4}\)
Áp dụng bất đẳng thức Cauchy tìm max
a) A=-x^2+2x+7
b) B=(x-y)(5-2x+2y)+14
Giúp mình nha mọi người!!!
TÌm min max
A=/x+1/+2./6,9-3y/+3
B=/2x-1/3/+/2x-2/3/+2\
C=/2x+5/+/2x-7/
D=/2x+2019/+/2x-2020/+3
p/s:/.../ là gttđ nha !
giúp mk nhé
a )max -13 - căn bậc hai của 2x-13
b) 5-x/3=y+2/4 và x+y=-1
c)tìm x 3/2x+7=5/3x+9
d)C=1,01+1,03+1,05+...+2,09
e)min(1*2)^2+ căn bậc hai của x+1
g) max : -11-căn bậc hai của 9x-18 + căn bậc hai x-2
hơi lộn xôn nhưng cố gắng giúp mik nhé !
Tìm max A =\(\frac{7^{x+1}}{7^{2x}+49}\)
Ta có 72x + 49 = (7x)2 + 72 \(\ge2×7^{x+1}\)
Thế vào ta được
A\(\le\frac{7^{x+1}}{2×7^{x+1}}=\frac{1}{2}\)
Vậy max là \(\frac{1}{2}\)đạt được khi x = 1
tại sao \(\left(7x\right)^2+7^2\ge2\times7^{x+1}\)