Phân tích đa thức thàng nhân tử
x4 + 2005x2 + 2004x + 2005
\(x^4+2005x^2+2004x+2005\)
Phân tích đa thức thành nhân tử
x^4+2005x^2+2004x+2005
=x^4-x+2005x^2+2005x+2005
=x(x^3-1)+2005(x^2+x+1)
=x(x-1)(x^2+x+1)+2005(x^2+x+1)
=(x^2+x+1)(x^2-x+2005)
phân tích đa thức thành nhân tử
x4+4=
\(x^4+4\)
= \(\left(x^2+2\right)^2-4x^2\)
= \(\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
phân tích đa thức thành nhân tử
x4 - 4x - 1
Đa thức này không phân tích được thành nhân tử bạn nhé.
phân tích đa thức thành nhân tử
x4+x2y2+y4
`x^4+x^2 y^2+y^4`
`=x^4+2x^2 y^2 +y^4-x^2 y^2`
`=(x^2+y^2)^2-(xy)^2`
`=(x^2-xy+y^2)(x^2+xy+y^2)`
phân tích đa thức thành nhân tử
x4 - 2x3 -2x2 -2x -3
x4 - 2x3-2x2 -2x -3
=(x4+x3)-(3x3+3x2)+(x2+x)-(3x+3)
=x3(x+1)-3x2(x+1)+x(x+1)-3(x+1)
= (x3-3x2+x-3)(x+1)
= ((x3-3x2)+(x-3))(x+1)
= (x2(x-3)+(x-3))(x+1)
=(x2+1)(x-3)(x+1)
phân tích đa thức thành nhân tử
x4+(n+1)x2+nx+n+1
Phân tích đa thức thành nhân tử :
\(x^4+2004x^2+2003x+2004\)
\(x^4+2004x^2+2003x+2004\)
\(=x^4+2004x^2+2004x-x+2004\)
\(=\left(x^4-x\right)+2004\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)+2004\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2004\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2004\right)\)
tìm cặp số a,b thoả mãn điều kiện; 3b/a^2-4=1-125a-3b/6a+13=1-125a
Phân tích thành nhân tử x4 + 2005x2 +2004x + 2005
x4 + 2005x2 + 2004x + 2005
=x4+2005x2+2005x-x+2005
=x4-x+2005x2+2005x+2005
=x(x3-1)+2005.(x2+x+1)
=x(x-1)(x2+x+1)+2005.(x2+x+1)
=(x2+x+1)[x(x-1)+2005]
=(x2+x+1)(x2-x+2005)
Phân tích đa thức thàng nhân tử
a2 - 4a - b2 + 4