Tìm x biết
\(32^{-x}\cdot16^x=2048\)
\(32^{-x}\cdot16^x=2048\)
Tìm x
a) |x-2| + |x| + 3x = 81
b)\(^{32^{-x}\cdot16^x=1024}\)
Tìm x: \(32^{-x}.16^x=2048\)
Bài 1 : Tìm n thuộc Z , biết
a)\(\dfrac{1}{9}\cdot27^n=3^n\)
b)\(3^{-2}\cdot3^4\cdot3^n=3^7\)
c) \(32^{-n}\cdot16^n=2048\)
a) \(\dfrac{1}{9}.27^n=3^n\)
\(\Leftrightarrow\dfrac{1}{9}=3^n:27^n\)
\(\Leftrightarrow\dfrac{1}{9}=\left(\dfrac{3}{27}\right)^n\)
\(\Leftrightarrow\dfrac{1}{9}=\left(\dfrac{1}{9}\right)^n\)
\(\Leftrightarrow n=1\)
b) \(3^{-2}.3^4.3^n=3^7\)
\(\Leftrightarrow3^2.3^n=3^7\)
\(\Leftrightarrow3^n=3^7:3^2\)
\(\Leftrightarrow3^n=3^5\)
\(\Leftrightarrow n=5\)
c) \(32^{-n}.16^n=2048\)
\(\Leftrightarrow\left(2^5\right)^{-n}.\left(2^4\right)^n=2^{11}\)
\(\Leftrightarrow2^{-5n}.2^{4n}=2^{11}\)
\(\Leftrightarrow2^{-n}=2^{11}\)
\(\Leftrightarrow n=-11\)
Tìm số tự nhiên x:
a/ 2^(-1)*2^n+4*2^n=9*2^5
b/ 32^(-n)*16^n=2048
2x+2 - 22 = 96
32-x . 16x = 2048
Tìm x thuộc Z
a)\(32^{-n}.16^n=2048\)
b)\(2^{-1}.2^n+4.2^n=9.2^5\)
a)\(32^{-n}\cdot16^n=2048\)
\(\left(2^5\right)^{-n}\cdot\left(2^4\right)^n\)=2048
\(2^{-5n}\cdot2^{4n}\)=\(2^{11}\)
\(2^{-5n+4n}=2^{11}\)
\(2^{-x}=2^{11}\)
\(\Rightarrow x=-11\)
b)\(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(\frac{1}{2}\cdot2^n+4\cdot2^n=288\)
\(2^n\left(\frac{1}{2}+4\right)=288\)
\(2^n\cdot\frac{9}{2}=288\)
\(2^n=288:\frac{9}{2}\)
\(2^n=64\)
\(2^n=2^6\)
\(\Rightarrow n=6\)
a) 32-n . 16n = 2048
\(\frac{1}{32n}\) . 16n = 2048
\(\frac{1}{2^n.16^n}\) . 16n = 2048
\(\frac{1}{2^n}\) = 2048
2-n = 2048
2-n = 211
\(\Rightarrow\) -n = 11
\(\Rightarrow\) n = -11
Vậy n = -11
tìm 1 số nguyên n biết
a) 1/9 x 27n = 3n
b) 3-2 x 34 x 3n = 37
c) 2-1 x 2n x 4 x 2n = 9 x 25
d) 32-n x 16n = 2048
\(\frac{1}{9}.27^n=3^n\)
\(\Rightarrow\frac{3^n}{27^n}=\frac{1}{9}\)
\(\Rightarrow\left(\frac{3}{27}\right)^n=\frac{1}{9}\)
\(\Rightarrow\left(\frac{1}{9}\right)^n=\frac{1}{9}\)
\(\Rightarrow n=1\)
ai on làm nè:
tìm x biết: \(\frac{2030-x}{15}+\frac{2041-x}{13}+\frac{2048-x}{11}+\frac{1961-x}{9}=0\)
\(\frac{2030-x}{15}+\frac{2041-x}{13}+\frac{2048-x}{11}+\frac{1961-x}{9}=0\)
\(\Leftrightarrow\frac{2030-x}{15}-1+\frac{2041-x}{13}-2+\frac{2048-x}{11}-3+\frac{1961-x}{9}+6=0\)
\(\Leftrightarrow\frac{2015-x}{15}+\frac{2015-x}{13}+\frac{2015-x}{11}+\frac{2015-x}{9}=0\)
\(\Leftrightarrow\left(2015-x\right)\left(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\right)=0\)
Mà \(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\ne0\)
\(\Rightarrow2015-x=0\Leftrightarrow x=2015\)