Cho A = \(\frac{\sqrt{x}-3}{2}\). Tìm \(x\in Z\) và \(x< 30\) để A nhận giá trị nguyên.
Bài 1: Cho \(A=\frac{\sqrt{x}-3}{2}\) Tìm \(x\in Z\)và \(x< 30\)để A có giá trị nguyên
Bài 2: Cho \(B=\frac{5}{\sqrt{x}-1}\)Tìm \(x\in Z\)để B có giá trị nguyên
Cho A=\(\frac{\sqrt{x}-3}{2}\).Tìm x\(\in\)Z và x<30 để A có giá trị nguyên.
Cho A = \(\frac{\sqrt{x}-3}{2}\). Tìm x thuộc Z và x < 30 để A có giá trị nguyên
Để A nguyên thì \(\sqrt{x}-3⋮2\)
Do x < 30 nên \(\sqrt{x}< 6\) => \(\sqrt{x}-3< 3\)
Lại có: \(\sqrt{x}-3\ge-3\) do \(\sqrt{x}\ge0\)
=> \(\sqrt{x}-3\in\left\{2;0;-2\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{5;3;1\right\}\)
\(\Rightarrow x\in\left\{25;9;1\right\}\)
Vậy ...
Cho A = \(\frac{\sqrt{x}-5}{\sqrt{x}+3}\)
a) Tìm x để A= -1
b) Tìm \(x\in Z\)để A nhận giá trị nguyên
a)\(A=\frac{\sqrt{x}-5}{\sqrt{x}+3}=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}\)
\(A=-1\Leftrightarrow1-\frac{8}{\sqrt{x}+3}=-1\)
\(\Leftrightarrow\frac{8}{\sqrt{x}+3}=2\)
\(\Leftrightarrow\sqrt{x}+3=4\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1\)
Vậy A = -1 \(\Leftrightarrow x=1\)
b) \(A=1-\frac{8}{\sqrt{x}+3}\)
\(A\inℤ\Leftrightarrow\frac{8}{\sqrt{x}+3}\inℤ\)hay \(8⋮\left(\sqrt{x}+3\right)\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm3;\pm4\right\}\)
Mà \(\sqrt{x}+3\ge3\)nên\(\Leftrightarrow\left(\sqrt{x}+3\right)\in\left\{3;4\right\}\)
\(TH1:\sqrt{x}+3=3\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
\(TH2:\sqrt{x}+3=4\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
Vậy \(x\in\left\{0;1\right\}\)thì A nguyên
a) Ta có: A=-1
=> \(\frac{\sqrt{x}-5}{\sqrt{x}+3}\)=-1
<=>\(\sqrt{x}-5=-\left(\sqrt{x}+3\right)\)
<=> \(2\sqrt{x}=2\)
<=> \(\sqrt{x}=1\)
<=> \(x=1\)
b) \(\frac{\sqrt{x}-5}{\sqrt{x}+3}=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}\)
=> \(\frac{\sqrt{x}-5}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}\)
A nhận giá trị nguyên khi \(\frac{8}{\sqrt{x}+3}\)là số nguyên, hay \(\sqrt{x}+3\)là ước số của 8. Dễ dàng tính được x=1, x=25
1, Cho biểu thức
\(D=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{2}}\)
a, rút gọn D và tính giá trị D khi \(x=17+12\sqrt{2}\)
b, tìm x để D < 1; D = \(\frac{3}{2}\)
c,tìm \(x\in Z\)để A nhận giá trị nguyên
mấy bro giúp tui nhé :<<
bai 1
A= \(\frac{\sqrt{x}-3}{2}\) . tìm x thuộc Z và x<30 để A có giá trị nguyên
bài 2
B = \(\frac{5}{\sqrt{x}-1}\)tìm x thuộc Z để B có gía trị nguyên
1, cho biểu thức
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}+3}+\frac{3\sqrt{x}-2}{1-\sqrt{2}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a, tìm đkxd và rút gọn
b, tính giá trị bt khi A khi \(x=3-2\sqrt{2}\)
c, tìm x để \(A=\frac{1}{2}\)
d, tìm \(x\in Z\) để bt A nhận giá trị Nguyên
<3 hóng các cao nhân ra tay nhé :3 !!! giúp mình nhé <3
Thuy Duong Nguyen đánh đề cẩn thận hơn bạn nhé
Lời giải :
a) ĐKXĐ : \(x\ne1\)
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(A=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}+3\right)\left(2-3\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{15\sqrt{x}-11-3x+6-7\sqrt{x}-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)
b) \(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)
\(\Leftrightarrow\sqrt{x}=\sqrt{2}-1\)
Khi đó \(A=\frac{2-5\left(\sqrt{2}-1\right)}{\sqrt{2}-1+3}\)
\(A=\frac{2-5\sqrt{2}+5}{\sqrt{2}+2}=\frac{7-5\sqrt{2}}{\sqrt{2}+2}\)
c) \(A=\frac{1}{2}\)
\(\Leftrightarrow\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{1}{2}\)
\(\Leftrightarrow2\left(2-5\sqrt{x}\right)=\sqrt{x}+3\)
\(\Leftrightarrow4-10\sqrt{x}-\sqrt{x}-3=0\)
\(\Leftrightarrow1-11\sqrt{x}=0\)
\(\Leftrightarrow11\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x}=\frac{1}{11}\)
\(\Leftrightarrow x=\frac{1}{121}\)( thỏa )
d) A nguyên \(\Leftrightarrow2-5\sqrt{x}⋮\sqrt{x}+3\)
\(\Leftrightarrow-5\left(\sqrt{x}+3\right)+17⋮\sqrt{x}+3\)
Vì \(-5\left(\sqrt{x}+3\right)⋮\sqrt{x}+3\)
\(\Rightarrow17⋮\sqrt{x}+3\)
\(\Rightarrow\sqrt{x}+3\inƯ\left(17\right)=\left\{17\right\}\)( vì \(\sqrt{x}+3\ge3\))
\(\Leftrightarrow\sqrt{x}=14\)
\(\Leftrightarrow x=196\)( thỏa )
Vậy....
\(a,ĐKXĐ:\orbr{\begin{cases}x+2\sqrt{x}+3\ne0\\\sqrt{x}+3\ne0\end{cases}}\)
\(\Leftrightarrow\orbr{ }\sqrt{x}\ne-3\)
Rút gọn: p/s: sau phân số thứ 2 ở mẫu ko có x à? Bạn chép đề sai?
Hình như đề phần rút gọn sai nhé!
\(x+2\sqrt{x}+3\) không thể tách được
Và đa số mình làm mẫu sẽ không như này :\(1-\sqrt{2}\) ,phải có x nữa .
Bạn xem lại đề rồi mình sẽ làm tiếp
Cho A = \(\frac{\sqrt{x-3}}{2}\) .Tìm x thuộc Z và x<30 để A có giá trị nguyên
Để A nguyên thì \(\sqrt{x-3}\) chia hết cho 2
Vì x < 30 => x - 3 < 27 => \(\sqrt{x-3}
Oh my god olm sửa đề cho em à em cảm mơn
Cho biểu thức :
A= \(\left(\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{x^2-2x+1}{2}\)
a) Xác định x để A tồn tại .
b) Rút gọn .
c) Tìm x thuộc Z để A nhận giá trị nguyên .
d) Tìm x để A nhận giá trị âm .