Những câu hỏi liên quan
QL
Xem chi tiết
HM
26 tháng 9 2023 lúc 22:55

a)

+) Số trung bình \(\overline x  = \frac{{6 + 8 + 3 + 4 + 5 + 6 + 7 + 2 + 4}}{9} = 5\)

+) phương sai hoặc \({S^2} = \frac{1}{9}\left( {{6^2} + {8^2} + ... + {4^2}} \right) - {5^2} = \frac{{10}}{3}\)

  => Độ lệch chuẩn \(S = \sqrt {\frac{{10}}{3}}  \approx 1,8\)

Sắp xếp mẫu số liệu theo thứ tự không giảm: 2; 3; 4; 4; 5; 6; 6; 7; 8.

+) Khoảng biến thiên: \(R = 8 - 2 = 6\)

Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

\({Q_2} = {M_e} = 5\)

\({Q_1}\) là trung vị của nửa số liệu 2; 3; 4; 4. Do đó \({Q_1} = 3,5\)

\({Q_3}\) là trung vị của nửa số liệu: 6; 6; 7; 8. Do đó \({Q_3} = 6,5\)

+) Khoảng tứ phân vị: \({\Delta _Q} = 6,5 - 3,5 = 3\)

+) x là giá trị ngoại lệ trong mẫu nếu \(x > 6,5 + 1,5.3 = 11\) hoặc \(x < 3,5 - 1,5.3 =  - 1\)

Vậy không có giá trị ngoại lệ trong mẫu số liệu trên.

b)

+) Số trung bình \(\overline x  = \frac{{13 + 37 + 64 + 12 + 26 + 43 + 29 + 23}}{8} = 30,875\)

+) phương sai hoặc \({S^2} = \frac{1}{8}\left( {{{13}^2} + {{37}^2} + ... + {{23}^2}} \right) - 30,{875^2} \approx 255,8\)

  => Độ lệch chuẩn \(S \approx 16\)

Sắp xếp mẫu số liệu theo thứ tự không giảm: 12; 13; 23; 26; 29; 37; 43; 64.

+) Khoảng biến thiên: \(R = 64 - 12 = 52\)

Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

\({Q_2} = {M_e} = 27,5\)

\({Q_1}\) là trung vị của nửa số liệu 12; 13; 23; 26. Do đó \({Q_1} = 18\)

\({Q_3}\) là trung vị của nửa số liệu: 29; 37; 43; 64. Do đó \({Q_3} = 40\)

+) Khoảng tứ phân vị: \({\Delta _Q} = 40 - 18 = 22\)

+) x là giá trị ngoại lệ trong mẫu nếu \(x > 40 + 1,5.22 = 73\) hoặc \(x < 18 - 1,5.22 =  - 15\)

Vậy không có giá trị ngoại lệ trong mẫu số liệu trên.

Bình luận (0)
H24
Xem chi tiết
KT
22 tháng 9 2023 lúc 13:55

Tham khảo:

a) Sắp xếp lại dãy số liệu theo thứ tự không giảm:

Số trung bình của số liệu là: \(\bar x \approx 15821,87\)

Tứ phân vị thứ nhất là: \({x_8} = 15139\)

Tứ phân vị thứ hai là: \({x_{16}} = 15685\)

Tứ phân vị thứ ba là: \({x_{24}} = 16586\)

Mẫu số liệu có 1 giá trị ngoại lệ.

b)

c) Ta có:

• Số ca nhiễm mới SARS-CoV-2 trung bình trong tháng 12/2021 tại Việt Nam là:

\(\bar x = \frac{{14.14,74 + 14.16,25 + 2.17,75 + 0.19,25 + 1.20,75}}{{31}} \approx 15,81\)

• Gọi \({x_1};{x_2};...;{x_{31}}\) số ca nhiễm mới SARS-CoV-2 mỗi ngày trong tháng 12/2021 tại Việt Nam được xếp theo thứ tự không giảm.

Ta có: \({x_1},...,{x_{14}} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{\begin{array}{*{20}{c}}{\left[ {14;15,5} \right)}\end{array}}\end{array}}\end{array};{x_{15}},...,{x_{28}} \in \begin{array}{*{20}{l}}{\begin{array}{*{20}{c}}{\left[ {15,5;17} \right)}\end{array}}\end{array};{x_{29}},{x_{30}} \in \begin{array}{*{20}{c}}{\left[ {17;18,5} \right)}\end{array};{x_{31}} \in \begin{array}{*{20}{l}}{\begin{array}{*{20}{c}}{\left[ {20;21,5} \right)}\end{array}}\end{array}\)

Tứ phân vị thứ hai của dãy số liệu là: \({x_{16}}\)

Ta có: \(n = 31;{n_m} = 14;C = 14;{u_m} = 15,5;{u_{m + 1}} = 17\)

Do \({x_{16}} \in \begin{array}{*{20}{c}}{\left[ {15,5;17} \right)}\end{array}\) nên tứ phân vị thứ hai của dãy số liệu là:

\({Q_2} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 15,5 + \frac{{\frac{{31}}{2} - 14}}{{14}}.\left( {17 - 15,5} \right) \approx 15,66\)

Tứ phân vị thứ nhất của dãy số liệu là: \({x_8}\).

Ta có: \(n = 31;{n_m} = 14;C = 0;{u_m} = 14;{u_{m + 1}} = 15,5\)

Do \({x_8} \in \begin{array}{*{20}{c}}{\left[ {14;15,5} \right)}\end{array}\) nên tứ phân vị thứ nhất của dãy số liệu là:

\({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 14 + \frac{{\frac{{31}}{4} - 0}}{{14}}.\left( {15,5 - 14} \right) \approx 14,83\)

Tứ phân vị thứ ba của dãy số liệu là: \({x_{24}}\).

Ta có: \(n = 31;{n_j} = 14;C = 14;{u_j} = 15,5;{u_{j + 1}} = 17\)

Do \({x_{24}} \in \begin{array}{*{20}{c}}{\left[ {15,5;17} \right)}\end{array}\) nên tứ phân vị thứ ba của dãy số liệu là:

\({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right) = 15,5 + \frac{{\frac{{3.31}}{4} - 14}}{{14}}.\left( {17 - 15,5} \right) \approx 16,49\)

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 3 2017 lúc 15:42

Chọn A.

Giả sử các giá trị của mẫu số liệu là a; b; c; d với  0 < a < b < c < d và a; b; c;d là số tự  nhiên.

+ Ta có 

Mà số trung bình là 6 nên a + b + c + d = 24

Suy ra a + d = 14

+ Ta có  hay  1 < b < 5 mà b  là số tự nhiên nên b = 2; 3; 4

+ Nếu b = 2  thì c = 8, mà 0 < a < b; a là  số tự nhiên nên a = 1 và d = 13

Khi đó các giá trị của mẫu số liệu là 1; 2; 8; 13

+ Nếu b = 3 thì c = 7, mà 0 < a < b; a số tự nhiên nên có 2 khả năng xảy ra:  a = 1 ; d = 13 hoặc a = 2 ; d = 12

Khi đó có hai mẫu số liệu thỏa đề bài có giá trị là 1;3;7;13 và 2;3;7;12

+ Nếu b = 4 thì c = 6, mà 0 < a < b; a là số tự nhiên nên có 3 khả năng xảy ra:

a = 1; d = 13 hoặc a = 2 ; d = 12 hoặc a = 3 ; d = 11

Khi đó có ba mẫu số liệu thỏa đề bài có giá trị là 1;4;6;13 hoặc  2;4;6;12 hoặc  3;4;6;11

Suy ra với mẫu số liệu có các giá trị là 3;4;6;11 thì hiệu của giá trị lớn nhất và giá trị nhỏ nhất của mẫu số liệu đạt giá trị nhỏ nhất.

Bình luận (1)
QL
Xem chi tiết
HM
26 tháng 9 2023 lúc 22:55

a)

+) Số trung bình \(\overline x  = \frac{{ - 2.10 + ( - 1).10 + 0.30 + 1.20 + 2.10}}{{10 + 20 + 30 + 20 + 10}} = 0\)

+) phương sai hoặc \({S^2} = \frac{1}{90}\left( {10.{{( - 2)}^2} + 10.{{( - 1)}^2} + ... + {{10.2}^2}} \right) - {0^2} = 4 \over 3\)

  => Độ lệch chuẩn \(S \approx 1,155\)

+) Khoảng biến thiên: \(R = 2 - ( - 2) = 4\)

Tứ phân vị: \({Q_2} = 0;{Q_1} =  - 1;{Q_3} = 1\)

+) Khoảng tứ phân vị: \({\Delta _Q} = 1 - ( - 1) = 2\)

b) Giả sử cỡ mẫu \(n = 10\). Khi đó mẫu số liệu trở thành:

Giá trị

0

1

2

3

4

Tần số

1

2

4

2

1

+) Số trung bình \(\overline x  = \frac{{0.0,1 + 1.0,2 + 2.0,4 + 3.0,2 + 4.0,1}}{{0,1 + 0,2 + 0,4 + 0,2 + 0,1}} = 2\)

+) phương sai hoặc \({S^2} = \frac{1}{1}\left( {0,{{1.0}^2} + 0,{{2.1}^2} + ... + 0,{{1.4}^2}} \right) - {2^2} = 1,2\)

  => Độ lệch chuẩn \(S \approx 1,1\)

+) Khoảng biến thiên: \(R = 4 - 0 = 4\)

Tứ phân vị: \({Q_2} = 2;{Q_1} = 1;{Q_3} = 3\)

+) Khoảng tứ phân vị: \({\Delta _Q} = 3 - 1 = 2\)

Bình luận (0)
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 21:02

Sắp xếp theo thứ tự không giảm.:

3,2  3,6  4,4  4,5  5,0  5,4  6,0  6,7  7,0  7,2  7,7  7,8  8,4  8,6  8,7

Vì n=15 nên \({Q_2} = 6,7\)

\({Q_1} = 4,5;{Q_3} = 7,8\)

\({\Delta _Q} = {Q_3} - {Q_1} = 7,8 - 4,5 = 3,3\)

\({Q_3} + 1,5.{\Delta _Q} = 12,75\)

\({Q_1} - 1,5{\Delta _Q} =  - 0,45\)

Ta thấy không có giá trị nào dưới -0,45 và trên 12,75 nên không có giá trị bất thường.

Bình luận (0)
TD
Xem chi tiết
TD
24 tháng 2 2022 lúc 20:26

helppppppppppp meeeeeeeeeee

 

Bình luận (0)
QL
Xem chi tiết
HM
25 tháng 9 2023 lúc 23:54

a) \(23;{\rm{ }}41;{\rm{ }}71;{\rm{ }}29;{\rm{ }}48;{\rm{ }}45;{\rm{ }}72;{\rm{ }}41\).

+) Số trung bình: \(\overline x  = \frac{{23 + 41 + 71 + 29 + 48 + 45 + 72 + 41}}{8} = 46,25\)

+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: \(23;{\rm{ }}29;{\rm{ }}41;{\rm{  }}41;\;{\rm{ }}45;{\rm{ }}48;\;71;72\)

Bước 2: \(n = 8\), là số chẵn nên \({Q_2} = {M_e} = \frac{1}{2}(41 + 45) = 43\)

\({Q_1}\) là trung vị của nửa số liệu \(23;{\rm{ }}29;{\rm{ }}41;{\rm{ }}41\). Do đó \({Q_2} = \frac{1}{2}(29 + 41) = 35\)

\({Q_3}\) là trung vị của nửa số liệu \(45;{\rm{ }}48;\;71;72\). Do đó \({Q_3} = \frac{1}{2}(48 + 71) = 59,5\)

+) Chỉ có giá trị 41 xuất hiện 2 lần, nhiều hơn các giá trị còn lại.

Do đó mốt \({M_o} = 41\)

b) \(12;{\rm{ }}32;{\rm{ }}93;{\rm{ }}78;{\rm{ }}24;{\rm{ }}12;{\rm{ }}54;{\rm{ }}66;{\rm{ }}78\).

+) Số trung bình: \(\overline x  = \frac{{12 + 32 + 93 + 78 + 24 + 12 + 54 + 66 + 78}}{9} \approx 49,89\)

+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: \(12;{\rm{ }}12;{\rm{ }}24;{\rm{ }}32;{\rm{ }}54;{\rm{ }}66;{\rm{ }}78;{\rm{ }}78;\;93\)

Bước 2: \(n = 9\), là số lẻ nên \({Q_2} = {M_e} = 54\)

\({Q_1}\) là trung vị của nửa số liệu \(12;{\rm{ }}12;{\rm{ }}24;{\rm{ }}32\). Do đó \({Q_2} = \frac{1}{2}(12 + 24) = 18\)

\({Q_3}\) là trung vị của nửa số liệu \(66;{\rm{ }}78;{\rm{ }}78;\;93\). Do đó \({Q_3} = \frac{1}{2}(78 + 78) = 78\)

+) Giá trị 12 và giá trị 78 xuất hiện 2 lần, nhiều hơn các giá trị còn lại.

Do đó mốt \({M_o} = 12,{M_o} = 78.\)

Bình luận (0)
ND
Xem chi tiết
KK
27 tháng 3 2022 lúc 8:16

Quy đồng tử số hai phân số \(\dfrac{25}{37}\) ta được hai phân số \(\dfrac{25}{37}\) và \(\dfrac{25}{30}\) 

Số đó là : 37-30=7

Đáp số : 7 

Bình luận (1)
QL
Xem chi tiết
KT
22 tháng 9 2023 lúc 0:13

Tham khảo:

Ta có:

Số trung bình là \(\bar x = \frac{{3 \times 15 + 15 \times 45 + 10 \times 75 + 7 \times 105}}{{3 + 15 + 10 + 7}} = 63\)

Cỡ mẫu là: \(n = \;3\; + \;15\; + \;10\; + \;7\; = 35\)

Ý nghĩa: Xấp xỉ bằng số trung bình của mẫu số liệu gốc, cho biết vị trí trung tâm của mẫu số liệu và đại diện cho mẫu số liệu

Trung vị là \({x_{18}}\) thuộc nhóm \(\left[ {30;60} \right)\), do đó

\(p = 2,\;{a_2} = 30;\;{m_2} = 15;\;\;{m_1} = 3;\;\;{a_3} - {a_2} = 30\) và ta có:

\({M_e} = 30 + \frac{{\frac{{35}}{2} - 3}}{{15}} \times 30 = 59\).

Bình luận (0)