Tính A biết A=(200-2-1)(199-2-1)....(101-2-1)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính tỉ số A/B biết:
A= 1/1*2+1/3*4+1/5*6+...+1/199+200
B= 1/101*200+1/102*199+...+1/200*101
Tính tỉ số A/B biết:
A= 1/1*2+1/3*4+1/5*6+...+1/199+200
B= 1/101*200+1/102*199+...+1/200*101
A = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Lại có B = \(\frac{1}{101.200}+\frac{1}{102.199}+...+\frac{1}{200.101}\)
=> 301B = \(\frac{301}{101.200}+\frac{301}{102.199}+...+\frac{301}{200.101}\)
=> 301B = \(\frac{1}{101}+\frac{1}{200}+\frac{1}{102}+\frac{1}{199}+...+\frac{1}{200}+\frac{1}{101}=2\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)\)
=> B = \(\frac{2}{301}\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)\)
Khi đó \(\frac{A}{B}=\frac{\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)}{\frac{2}{301}\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)}=\frac{1}{\frac{2}{301}}=\frac{301}{2}=150,5\)
cho a=1/1*2+1/3*4+1/5*6+...+1/199*200
b=1/101+1/102+...+1/200
tính a/b
Ta có: \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
\(\Rightarrow A=B\)
Khi đó, \(\frac{A}{B}=1\)
tính giùm em cái này với,em đang gấp lắm ạ!
A=1/101 + 1/102 + 1/103 + ... + 1/199 + 1/200.Chứng minh 1/2 < A < 1.
chứng tỏ
a) 1 phần 101 + 1 phần 102 + 1 phần 103 + ..... + 1 phần 199 + 1 phần 200 <1
b ) 1 phần 101 + 1 phần 102 +...+ 1 phần 199 + 1 phần 200 > 7 phần 12
bài 2 cho a phần b = 1 + 1 phần 2 + 1 phần 3 + 1 phần 4 + 1 phần 5 + 1 phần 6 ( a ,b ∈ N )
chứng tỏ a ⋮7
cần gấp mn ơi trưa nay mình đi học rồi
Tính các tổng sau:
a) A = 1*2+2*3+3*4+...+2014*2015
b) B = 101^2+102^2+...+199^2+200^2
c) C = 1*3+2*4+3*5+4*6+...+99*101+100*102
cho mi sửa lại:
\(a) A = 1^2+2^3+3^4+...+2014^{2015} b) B = 101^2+102^2+...+199^2+200^2 c) C = 1^3+2^4+3^5+4^6+...+99^{101}+100^{102}\)
dấu 8 là nhân còn dấu ^ là mũ ạ
Tính giá trị của biểu thức: \(A=202\left(200^{-2}-1\right)\left(199^{-2}-1\right)\left(198^{-2}-1\right)...\left(101^{-2}-1\right)\)
\(A=202\left(200^{-2}-1\right)\left(199^{-2}-1\right)\left(198^{-2}-1\right)...\left(101^{-2}-1\right)\)
\(=202\left(\frac{1}{200^2}-1\right)\left(\frac{1}{199^2}-1\right)\left(\frac{1}{198^2}-1\right)...\left(\frac{1}{101^2}-1\right)\)
\(=-202\left(1-\frac{1}{200^2}\right)\left(1-\frac{1}{199^2}\right)\left(1-\frac{1}{198^2}\right)...\left(1-\frac{1}{101^2}\right)\)
\(=-202\left(\frac{199.201}{200^2}\right).\left(\frac{198.200}{199^2}\right).\left(\frac{197.199}{198^2}\right)...\left(\frac{102.100}{101^2}\right)\)
\(=-202.\frac{199.201.198.200.197.199...100.102}{200^2.199^2.198^2...101^2}\)
\(=-202.\frac{\left(199.198.197...100\right)\left(201.200.199...102\right)}{\left(200.199.198...101\right)\left(200.199.198...101\right)}\)
\(=-202.\frac{1.201}{2.101}=-202.\frac{201}{202}=-201\)
Tình : A = (200-2-1)(199-2-1).......(101-2-1)
Chung minh rang:
a,1-1/2+1/3-1/4+...+1/199-1/200=1/101+1/102+...+1/200