Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NA
Xem chi tiết
NA
Xem chi tiết
XO
7 tháng 8 2020 lúc 16:56

A = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

Lại có B = \(\frac{1}{101.200}+\frac{1}{102.199}+...+\frac{1}{200.101}\)

=> 301B = \(\frac{301}{101.200}+\frac{301}{102.199}+...+\frac{301}{200.101}\) 

=> 301B = \(\frac{1}{101}+\frac{1}{200}+\frac{1}{102}+\frac{1}{199}+...+\frac{1}{200}+\frac{1}{101}=2\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)\)

=> B = \(\frac{2}{301}\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)\)

Khi đó \(\frac{A}{B}=\frac{\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)}{\frac{2}{301}\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)}=\frac{1}{\frac{2}{301}}=\frac{301}{2}=150,5\)

Bình luận (0)
 Khách vãng lai đã xóa
LA
Xem chi tiết
.
29 tháng 8 2020 lúc 14:50

Ta có: \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)

\(\Rightarrow A=B\)

Khi đó, \(\frac{A}{B}=1\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
HG
Xem chi tiết
HG
18 tháng 3 2021 lúc 10:18

i

help me

Bình luận (0)
ND
Xem chi tiết
PN
25 tháng 12 2020 lúc 20:46

cho mi sửa lại:

\(a) A = 1^2+2^3+3^4+...+2014^{2015} b) B = 101^2+102^2+...+199^2+200^2 c) C = 1^3+2^4+3^5+4^6+...+99^{101}+100^{102}\)

Bình luận (0)
 Khách vãng lai đã xóa
HT
9 tháng 3 2021 lúc 22:39

dấu 8 là nhân còn dấu ^ là mũ ạ

Bình luận (0)
 Khách vãng lai đã xóa
AA
Xem chi tiết
XO
1 tháng 9 2020 lúc 0:29

\(A=202\left(200^{-2}-1\right)\left(199^{-2}-1\right)\left(198^{-2}-1\right)...\left(101^{-2}-1\right)\)

\(=202\left(\frac{1}{200^2}-1\right)\left(\frac{1}{199^2}-1\right)\left(\frac{1}{198^2}-1\right)...\left(\frac{1}{101^2}-1\right)\)

\(=-202\left(1-\frac{1}{200^2}\right)\left(1-\frac{1}{199^2}\right)\left(1-\frac{1}{198^2}\right)...\left(1-\frac{1}{101^2}\right)\)

\(=-202\left(\frac{199.201}{200^2}\right).\left(\frac{198.200}{199^2}\right).\left(\frac{197.199}{198^2}\right)...\left(\frac{102.100}{101^2}\right)\)

\(=-202.\frac{199.201.198.200.197.199...100.102}{200^2.199^2.198^2...101^2}\)

\(=-202.\frac{\left(199.198.197...100\right)\left(201.200.199...102\right)}{\left(200.199.198...101\right)\left(200.199.198...101\right)}\)

\(=-202.\frac{1.201}{2.101}=-202.\frac{201}{202}=-201\)

Bình luận (0)
 Khách vãng lai đã xóa
MD
Xem chi tiết
VH
Xem chi tiết