choa+b+c=0
chung minh rang a^3+b^3+c^3=3abc
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
choa+b+c=0 cmr a^3 +b^3 +c^3 =3abc
a + b + c = 0
=> a+b=-c
a3 + b3 +c3 = a^3 + b^3 +3a^2b +3ab^2 -3a^2b-3ab^2 +c^3
= (a+b)^3 -3ab(a+b)+c^3
= -c^3 +3abc+c^3
= 3abc
=> a^3+b^3+c^3 = 3abc
Choa,b,c đôi một khác nhau thỏa mãn \(a^3+b^3+c^3=3abc\)
Chứng minh :\(\frac{1}{a^2+b^2-c^2}+\frac{1}{a^2-b^2+c^2}+\frac{1}{-a^2+b^2+c^2}=0\)
https://olm.vn/hoi-dap/detail/48946023107.html vào trang đó coi rồi
ta có a+b+c=0 => a+b=-c => a^2 +b^2 =c^2-2ab
tương tự a^2 + c^2 =b^2-2ac
b^2 + c^2 =a^2-2bc
thế cào A= -1/2ab + -1/2ac + -1/2bc = -(c+a+b)/2abc=0 (vì a+b+c=0 )
ta có:a^3+b^3+c^3=3abc
<=>(a+b)^3+c^3-3ab(a+b)-3abc=0
<=>(a+b+c)[(a+b)^2+(a+b)c+c^2]-3ab(a+b...
<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0
<=>1/2(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]...
do a,b,c doi mot khac nhau nen PT<=>a+b+c=0(DPCM)
lộn nha không phải cái trang đó đâu cái này này
choA+B+C=0 CMR:a^3+b^3+c^3=3abc cmr:a^2+b^2+c^2=2(a^4+b^4+c^4)
Cho a+b+c= 0 CMR: a^3+b^3+c^3=3abc <bài này dễ nên ai nhanh và đúng thi mk tick choa~~~>
Xét hiệu: \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)\(=0\) (do a+b+c = 0)
\(\Rightarrow\)\(a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\)\(a^3+b^3+c^3=3abc\) (đpcm)
cho a+b+c=2009 chung minh rang \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}=2009\)
Xét TS
Có a^3 + b^3 + c^3 - 3abc = a^3 + 3a^2b + 3ab^2 + b^2 + c^3 - 3abc - 3a^2b - 3ab^2 = (a + b)^3 + c^3 - 3ab(a + b + c) = (a + b + c)( (a+b)^2 + (a + b)c + c^2 - 3abc) = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ac)
Rút gọn TS/MS được kết quả = a + b + c = 2009 => điều phải chứng minh
Tim cac so nguyen duong a,b,c . Biet rang
a3-b3-c3=3abc va a2=2(b+c)
a+b+c=0.cmr a^3+b^3+c^3=3abc
em chứng minh thế này được không các thầy (cô) giáo
a+b+c=0
=>a+b=-c
=>a+b=3abc/-3ab
=>(a+b).(-3ab)=3abc
=>(a+b).(a^2-ab+b^2-a^2-2ab-b^2)=3abc
=>(a+b)(a^2-ab+b^2)-(a+b).(a^2+2ab+b^2)=3abc
=>a^3+b^3-(a+b)^3=3abc
mà a+b=-c=> a^3+b^3-(-c)^3=3abc
=>a^3+b^3+c^3=3abc
Được bạn nhé :"))))
Ủng hộ mình = cách theo dõi mình nha
a+b+c=0
\(\left(a+b+c\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3a^2c+3ac^2+3b^2c+3bc^2+6abc=0\)
\(\Leftrightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3a^2c+3ac^2+3abc\right)+\left(3bc^2+3b^2c+3abc\right)-3abc=0\)\(\Leftrightarrow a^3+b^3+c^3+3ab\left(a+b+c\right)+3ac\left(a+b+c\right)+3bc\left(a+b+c\right)-3abc=0\)\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
mk ko chắc cách bn đúng nhưng cách của mk là phù hợp nhất đó
Không nên chứng minh như thế này nhé. Ở ngay phần \(a+b=\frac{3abc}{-3ab}\) đã sai sót vì bạn không tính đến trường hợp \(a=0\) hoặc $b=0$ đã thực hiện phép chia như vậy.
Sử dụng hằng đẳng thức: \((a+b)^3=a^3+b^3+3ab(a+b)\) ta có:
\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3\)
Vì \(a+b+c=0\Rightarrow a+b=-c\). Thay vào biểu thức trên:
\((a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=-c^3+3abc+c^3=3abc\)
Do đó:
\(a^3+b^3+c^3=3abc\)
tim so duong a,b,c biet rang a3-b3-c3=3abc va a2=2(b+c)
choA= a+b-5 B=-b-c+1 C=b-c-4 D=b-a. Chung minh rang A+b= C-D
ta có:
A+B=(a+b-5)+(-b-c+1)
=a+b-5-b-c+1
=a-c+(b-b)-(5-1)
=a-c-4 (1)
Lại có:
C-D=(b-c-4)-(b-a)
=b-c-4-b+a
=(b-b)+a-c-4
=a-c-4 (2)
Từ (1) và (2)=>A+B=C-D (vì cùng bằng a-c-4)