Những câu hỏi liên quan
NH
Xem chi tiết
DL
14 tháng 7 2016 lúc 1:51

a./ \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{10}{20}=\frac{1}{2}\)

\(\Rightarrow x=\frac{5}{2};y=2;z=\frac{7}{2}\)

Bình luận (0)
DL
14 tháng 7 2016 lúc 1:53

b./ \(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{x+y}{9}=\frac{18}{9}=2\)

\(\Rightarrow x=2\cdot4=8;y=2\cdot5=10;z=2\cdot2=4\)

Bình luận (0)
TT
Xem chi tiết
ZZ
12 tháng 7 2019 lúc 8:30

a

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)

Thay vào,ta được:

\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)

\(\Leftrightarrow4k+2+9k+6-4k-3=50\)

\(\Leftrightarrow9k+5=50\)

\(\Leftrightarrow9k=45\)

\(\Leftrightarrow k=5\)

Bình luận (0)
ZZ
12 tháng 7 2019 lúc 8:42

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)

\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)

\(\Rightarrow x=2\cdot2+1=5\)

\(y=4\cdot2-3=5\)

\(z=2\cdot6+5=17\)

Câu c tương tự như câu 1

Bình luận (0)
HS
12 tháng 7 2019 lúc 9:30

\(c,\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\)và x + y + z = 107

Ta có : \(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\Leftrightarrow\frac{x}{\frac{5}{2}}=\frac{y}{\frac{10}{3}}=\frac{z}{12}=\frac{x+y+z}{\frac{5}{2}+\frac{10}{3}+12}=\frac{107}{\frac{107}{6}}=107\cdot\frac{6}{107}=6\)

Vậy : \(\hept{\begin{cases}\frac{2x}{5}=6\\\frac{3y}{10}=6\\\frac{z}{12}=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=15\\x=20\\z=72\end{cases}}\)

Bình luận (0)
NH
Xem chi tiết
NH
31 tháng 8 2015 lúc 15:03

d) \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)

=> \(\frac{y+z-x}{4+6-2}=\frac{8}{8}=1\)

=> \(\frac{x}{2}=1\Rightarrow x=2\)

=> \(\frac{y}{4}=1\Rightarrow y=4\)

=> \(\frac{z}{6}=1\Rightarrow z=6\)

Bình luận (0)
NH
31 tháng 8 2015 lúc 15:10

b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow x=y.\frac{3}{4}\)

\(\frac{y}{6}=\frac{z}{8}\Rightarrow z=y.\frac{8}{6}=y.\frac{4}{3}\)

=> \(3x-2y-z=y.3.\frac{3}{4}-2y-y.\frac{4}{3}=13\)

=> \(y.\frac{9}{4}-2y-y.\frac{4}{3}=y.\left(\frac{9}{4}-2-\frac{4}{3}\right)=13\)

=> \(y.\frac{-13}{12}=13\)

\(y=13:\frac{-13}{12}\)

\(y=-12\)

=> \(x=y.\frac{3}{4}=-9\)

=> \(z=y.\frac{4}{3}=-16\)

Bình luận (0)
VA
6 tháng 1 2016 lúc 15:05

a) Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)=> x=3k ; y=4k ; z=5k

Ta có:

2x + 3y + 5z = 86

=> 2(3k) + 3(4k) + 5(5k) = 86

     6k + 12k + 25k = 86

     (6 + 12 + 25)k = 86

     43k = 86

     k = 86 : 43 = 2

Vậy x = 3k = 3 . 2 = 6

       y = 4k = 4 . 2 = 8

       z = 5k = 5 . 2 = 10

b) Ta có:

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{12}=\frac{z}{16}\)

Vậy \(\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\)

Đặt \(\frac{x}{9}=\frac{y}{12}=\frac{z}{16}=k\)=> x=9k ; y=12k ; z=16k

Ta có:

3x - 2y - z = 13

=> 3(9k) - 2(12k) - 16k = 13

     27k - 24k - 16k = 13

     (27 - 24 - 16)k = 13

      (-13)k = 13

       k = 13 : (-13) = -1

Vậy x = 9k = 9 . (-1) = -9

       y = 12k = 12 . (-1) = -12

       z = 16k = 16 . (-1) = -16

c) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)=> x=2k ; y=3k ; z=4k

Ta có: xy + yz + zx = 104

=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104

     6k2 + 12k2 + 8k2 = 104

     (6 + 12 + 8)k2 = 104

     26k2 = 104

     k2 = 104 : 26 = 4

=> k\(\in\){-2;2}

Vậy:

TH1:                                  TH2:

x = 2k = 2 . (-2) = -4            x = 2k = 2 . 2 = 4

y = 3k = 3 . (-2) = -6            y = 3k = 3 . 2 = 6

z = 4k = 4 . (-2) = -8            z = 4k = 4 . 2 = 8

d) Ta có: \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\) và y+z-x=8

Theo tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{y+z-x}{4+6-2}=\frac{8}{8}=1\)

Vì \(\frac{x}{2}\)=1 => x=2.1=2

    \(\frac{y}{4}\)=1 => y=4.1=4

    \(\frac{z}{6}\)=1 => z=6.1=6

Bình luận (0)
LH
Xem chi tiết
PB
29 tháng 10 2017 lúc 21:14

a) x/5=y/2

= x+y/5+2=21/7=3

=> x/5=3=>x=15

    y/2=3=>x=6

Bình luận (0)
PC
29 tháng 10 2017 lúc 21:17

1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)

\(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)

\(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)

c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)

*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)

*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)

Bình luận (0)
NV
Xem chi tiết
GW
31 tháng 8 2021 lúc 19:21

\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)

Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)

Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)

\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)

Lại có : \(2x+3y-z=186\)

Thay vào ta có :

\(2.15k+3.20k-28k=186\)

\(30k+60k-28k=186\)

\(62k=186\)

\(k=3\)

Thay vào ta được :

\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)

Vậy .....

Bình luận (0)
 Khách vãng lai đã xóa
74
25 tháng 4 2024 lúc 13:57

1) Tìm x, biết:

a) x:2=y:5 và x+y=21

b) x2=y2𝑥2=𝑦2và x.y=54

c) x:7=y:5 và y-x=12

2) Tím các số x, y, z, biết:

a) x10=y6=z21𝑥10=𝑦6=𝑧21và 5x+y-2z=28

b) x3=y4𝑥3=𝑦4y5=z7𝑦5=𝑧7và 2x+3y-z=124

c) 3x=2y; 7y=5z và x-y+z=32

d) 2x=3x=5z và x+y-z=95

Bình luận (0)
74
25 tháng 4 2024 lúc 13:57

Để giải các bài toán này:

1a) \( \frac{x}{2} = \frac{y}{5} \) và \( x + y = 21 \)

Từ phương trình thứ nhất, ta có \( x = \frac{2y}{5} \). Thay vào phương trình thứ hai:
\[ \frac{2y}{5} + y = 21 \]
\[ \frac{7y}{5} = 21 \]
\[ 7y = 105 \]
\[ y = 15 \]

Thay \( y = 15 \) vào \( x + y = 21 \):
\[ x + 15 = 21 \]
\[ x = 6 \]

Vậy, \( x = 6 \).

1b) \( \frac{x^2}{2^2} = \frac{y^2}{2^2} \) và \( x \cdot y = 54 \)

Từ phương trình thứ nhất:
\[ x^2 = y^2 \]

Đặt \( x = y \) ta có:
\[ x^2 = 54 \]
\[ x = \sqrt{54} \]
\[ x = 3\sqrt{6} \]

Vậy, \( x = 3\sqrt{6} \).

1c) \( \frac{x}{7} = \frac{y}{5} \) và \( y - x = 12 \)

Từ phương trình thứ nhất, ta có \( x = \frac{7y}{5} \). Thay vào phương trình thứ hai:
\[ y - \frac{7y}{5} = 12 \]
\[ \frac{5y}{5} - \frac{7y}{5} = 12 \]
\[ \frac{-2y}{5} = 12 \]
\[ -2y = 60 \]
\[ y = -30 \]

Thay \( y = -30 \) vào \( y - x = 12 \):
\[ -30 - x = 12 \]
\[ x = -42 \]

Vậy, \( x = -42 \).

2a) \( \frac{x}{10} = \frac{y}{6} = \frac{z}{21} \) và \( 5x + y - 2z = 28 \)

Đặt \( k = \frac{x}{10} = \frac{y}{6} = \frac{z}{21} \), ta có:
\[ x = 10k, \quad y = 6k, \quad z = 21k \]

Thay vào phương trình \( 5x + y - 2z = 28 \):
\[ 5(10k) + 6k - 2(21k) = 28 \]
\[ 50k + 6k - 42k = 28 \]
\[ 14k = 28 \]
\[ k = 2 \]

\[ x = 10(2) = 20, \quad y = 6(2) = 12, \quad z = 21(2) = 42 \]

Vậy, \( x = 20, y = 12, z = 42 \).

2b) \( \frac{x}{3} = \frac{y}{4} \), \( \frac{y}{5} = \frac{z}{7} \), và \( 2x + 3y - z = 124 \)

Đặt \( k = \frac{x}{3} = \frac{y}{4} \), ta có:
\[ x = 3k, \quad y = 4k \]

Thay vào \( \frac{y}{5} = \frac{z}{7} \):
\[ \frac{4k}{5} = \frac{z}{7} \]
\[ z = \frac{28}{5}k \]

Thay \( x, y, z \) vào \( 2x + 3y - z = 124 \):
\[ 2(3k) + 3(4k) - \frac{28}{5}k = 124 \]
\[ 6k + 12k - \frac{28}{5}k = 124 \]
\[ \frac{30k + 60k - 28k}{5} = 124 \]
\[ \frac{62k}{5} = 124 \]
\[ 62k = 620 \]
\[ k = 10 \]

\[ x = 3(10) = 30, \quad y = 4(10) = 40, \quad z = \frac{28}{5}(10) = 56 \]

Vậy, \( x = 30, y = 40, z = 56 \).

2c) \( 3x = 2y \), \( 7y = 5z \), và \( x - y + z = 32 \)

Từ \( 3x = 2y \) và \( 7y = 5z \):
\[ x = \frac{2}{3}y, \quad z = \frac{7}{5}y \]

Thay vào \( x - y + z = 32 \):
\[ \frac{2}{3}y - y + \frac{7}{5}y = 32 \]
\[ \frac{10y - 15y + 21y}{15} = 32 \]
\[ \frac{16y}{15} = 32 \]
\[ y = 30 \]

\[ x = \frac{2}{3}(30) = 20, \quad z = \frac{7}{5}(30) = 42 \]

Vậy, \( x = 20, y = 30, z = 42 \).

2d) \( 2x = 3x = 5z \) và \( x + y - z = 95 \)

Từ \( 2x = 3x = 5z \), ta có:
\[ x = \frac{2}{3}x, \quad x = \frac{5}{3}z \]

Vậy, \( x = \frac{5}{3}z \).

Thay vào \( x + y - z = 95 \):
\[ \frac{5}{3}z + y - z = 95 \]
\[ \frac{2}{3}z + y = 95 \]
\[ y = 95 - \frac{2}{3}z \]

Thay \( x \) và \( y \) vào \( 2x = 3x = 5z \):
\[ 2(\frac{5}{3}z) = 3(\frac{5}{3}z) = 5z \]
\[ \frac{10}{3}z = 5z \]
\[ \frac{10}{3} = 5 \]
\[ \text{False} \]

Không có giải pháp thỏ

Bình luận (0)
LV
Xem chi tiết
AH
16 tháng 7 2018 lúc 19:20

a) Ta có: x/10=y/6=z/24 và 5x+y—2x=28

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

x/10=y/6=z/24=5x/50+y/6–2x/48= 5x+y—2x/50+6–48=28/ 8

Ta được: x= 10.28/8=35

y= 6.28/8=21

z=24.28/8=84

Bình luận (0)
H24
2 tháng 9 2018 lúc 14:40

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

Bình luận (0)
LV
21 tháng 10 2018 lúc 21:26

a, x/10 =y/6=z/24= 5x/50=y/6=2z/48

áp dụng tính chất dãy tỉ số bằng nhau

5x/50=y/6=2z/48= 5x+y-2z/50+6-48=28/2=14

==>x=140

      y=84

      z=336

b,x/6=y/4;y/5=z/7

==>x/15=y/20      (1)

      y/20=z/28      (2)

từ 1 và 2 => x/15=y/20=z/28 

x/15=y/20=z/28=2x/30=3y/60=z/28

áp dụng tính chất dãy tỉ số bàng nhau

2x/30=3y/60=z/38=2x+3y-z/30+60-28=186/62=3

=>x=45

=>y=60

=>z=84

Bình luận (0)
H24
Xem chi tiết
EC
6 tháng 10 2019 lúc 9:32

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) =>\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy ...

Bình luận (0)
H24

ê nhỏ tự túc đê

Bình luận (0)
H24
7 tháng 10 2019 lúc 12:47

BÙI THỊ YẾN NHI m ns ai là nhỏ hả... đến lớp xem t xử m thế nào

Bình luận (0)
LL
Xem chi tiết
LL
25 tháng 10 2017 lúc 20:27

Mình chỉ cần các bạn trả lời 4 câu nhanh nhất mình sẽ k.

Bình luận (0)
RV
30 tháng 7 2019 lúc 9:10

a)x-3/x+5=5/7 suy ra 7.(x-3) = 5(x+5)

Tương đương : 7x - 21 = 5x + 25

                          7x - 5x = 25 + 21 = 46

                          2x = 46 suy ra : x = 46/2 = 23

 Vậy x = 23

Bình luận (0)
NN
19 tháng 2 2021 lúc 21:54

1234231

 

Bình luận (0)
TD
Xem chi tiết
TM
17 tháng 7 2019 lúc 11:11

a, 2x/6=3y/12=5z/25=>2x+3y+5z/ 6+12+25=86/43=2

=>x=2.3=6

y=2.4=8

z=2.5=10

Bình luận (0)
CU
17 tháng 7 2019 lúc 11:12

\(a,\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

\(\Rightarrow\frac{2y}{6}=\frac{3y}{12}=\frac{5z}{25}\)

\(\Rightarrow\frac{2x+3y+5z}{6+12+25}=\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) ma 2y + 3y + 5z = 86

\(\Rightarrow\frac{86}{43}=\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

\(\Rightarrow2=\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

\(\Rightarrow\hept{\begin{cases}x=2\cdot3=6\\y=2\cdot4=8\\z=2\cdot5=10\end{cases}}\)

Bình luận (0)