Những câu hỏi liên quan
PK
Xem chi tiết
TM
Xem chi tiết
KT
24 tháng 7 2018 lúc 21:52

mk làm mẫu 2 bài đầu nhé, các bài còn lại bạn làm tương tự, các bài này đều áp dụng tính chất dãy tỉ số bằng nhau

1)  Áp dụng tính chất dãy tỉ số bằng nhau ta có     

\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)

suy ra:  \(\frac{x}{3}=2\)=>  \(x=6\)

            \(\frac{y}{4}=2\)=>  \(y=8\)

Vậy...

2)  Áp dụng tính chất dãy tỉ số bằng nhau ta có:

   \(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)

suy ra:  \(\frac{x}{5}=10\)=>  \(x=50\)

             \(\frac{y}{3}=10\)=>  \(y=30\)

Vậy...

Bình luận (0)
VP
Xem chi tiết
TG
30 tháng 3 2020 lúc 16:19

a/ 2x = 5y và x - 2y = -12

Ta có: 2x = 5y => \(\frac{x}{5}=\frac{y}{2}\)

Áp dụng: tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5+2}=\frac{x-2y}{5+2.2}=\frac{-12}{9}=-\frac{4}{3}\)

\(\frac{x}{5}=-\frac{4}{3}\Rightarrow x=\frac{-4}{3}.5=-\frac{20}{3}\)

\(\frac{y}{2}=-\frac{4}{3}\Rightarrow y=-\frac{4}{3}.2=-\frac{8}{3}\)

Vậy:.................

b/ 2x = 3y = 4z và x + y + z =21

Ta có: 2x = 3y = 4z

=> \(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)

=> \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)

Áp dụng: tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{21}{13}\)

\(\frac{x}{6}=\frac{21}{13}\Rightarrow x=\frac{21}{13}.6=\frac{126}{13}\)

\(\frac{y}{4}=\frac{21}{13}\Rightarrow y=\frac{21}{13}.4=\frac{84}{13}\)

\(\frac{z}{3}=\frac{21}{13}\Rightarrow z=\frac{21}{13}.3=\frac{63}{13}\)

Vậy:...............

c/Áp dụng: tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{32}{8}=4\)

\(\frac{x}{3}=4\Rightarrow x=4.3=12\)

\(\frac{y}{5}=4\Rightarrow y=4.5=20\)

Vậy:................

d/ Ta có: 7x = 3y

=> \(\frac{7x}{21}=\frac{3y}{21}\)

=> \(\frac{x}{3}=\frac{y}{7}\)

Áp dụng: tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)

\(\frac{x}{4}=-4\Rightarrow x=\left(-4\right).4=-16\)

\(\frac{y}{7}=-4\Rightarrow y=\left(-4\right).7=-28\)

Vậy:................

Bình luận (0)
 Khách vãng lai đã xóa
BC
30 tháng 3 2020 lúc 16:36

1,\(2x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{5}=\frac{2y}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{2y}{4}=\frac{x-2y}{5-4}=\frac{-12}{1}=-12\)

Do đó:

\(\frac{x}{5}=-12\Rightarrow x=-60\)

\(\frac{2y}{4}=-12\Leftrightarrow\frac{y}{2}=-12\Rightarrow x=-24\)

Vây x = -60,y = -24

2, 2x = 3y = 4z \(\Rightarrow BCNN\left(2;3;4\right)=12\)

nên \(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{21}{13}\)

Do đó

\(\frac{x}{6}=\frac{21}{13}\Rightarrow x=\frac{6.21}{13}=\frac{126}{13}\)

\(\frac{y}{4}=\frac{21}{13}\Rightarrow y=\frac{4.21}{13}=\frac{84}{13}\)

\(\frac{z}{3}=\frac{21}{13}\Rightarrow z=\frac{3.21}{13}=\frac{63}{13}\)

Một số bài toán về đại lượng tỉ lệ thuậnMột số bài toán về đại lượng tỉ lệ thuận

Bình luận (0)
 Khách vãng lai đã xóa
TG
30 tháng 3 2020 lúc 16:42

f/ \(\frac{x}{3}=\frac{y}{5};\frac{y}{2}=\frac{z}{7}\)

=> \(\frac{x}{6}=\frac{y}{10};\frac{y}{10}=\frac{z}{35}\)

=> \(\frac{x}{6}=\frac{y}{10}=\frac{z}{35}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{6}=\frac{y}{10}=\frac{z}{35}=\frac{x+y+z}{6+10+35}=\frac{102}{51}=2\)

\(\frac{x}{6}=2\Rightarrow x=2.6=12\)

\(\frac{y}{10}=2\Rightarrow y=2.10=20\)

\(\frac{z}{35}=2\Rightarrow z=2.35=70\)

Vậy:.................

h/ Đăt: \(\frac{x}{3}=\frac{y}{16}=k\)

\(\frac{x}{3}=k\Rightarrow x=3k\)

\(\frac{y}{16}=k\Rightarrow y=16k\)

Ta có: x. y = 192

=> 3k. 16k = 192

=> k2. (3. 16) = 192

=> k2. 48 = 192

=> k2 = 192 : 48 = 4

=> k = \(\pm\) 2

*Với k = 2

\(\frac{x}{3}=k\Rightarrow x=3.k=3.2=6\)

\(\frac{y}{16}=k\Rightarrow y=16.k=16.2=32\)

*Với k = -2

\(\frac{x}{3}=k\Rightarrow x=3.k=3.\left(-2\right)=-6\)

\(\frac{y}{16}=k\Rightarrow y=16.k=16.\left(-2\right)=-32\)

Vậy:..........

Bình luận (0)
 Khách vãng lai đã xóa
BB
Xem chi tiết
LB
10 tháng 10 2018 lúc 23:15

\(\dfrac{2x^2+2y^2}{20}=\dfrac{x^2-2y^2}{7}=\dfrac{3x^2}{27}=\dfrac{x^2}{9}\)

\(\dfrac{x^2-2y^2}{7}=\dfrac{x^2}{9}\Leftrightarrow9x^2-18y^2=7x^2\Leftrightarrow x^2=9y^2\)

ta có \(x^4.y^4=81\Leftrightarrow\left(9y^2\right)^2.y^4=81\Leftrightarrow y^8=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

\(x^2=9y^2\Leftrightarrow y^2=\dfrac{1}{9}\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{1}{3}\\y=-\dfrac{1}{3}\end{matrix}\right.\)

Bình luận (0)
NB
Xem chi tiết
NB
4 tháng 11 2016 lúc 21:32

Tớ biết cách làm rồi. Đây là lời giải các bạn tham khảo nhé !

Đặt x ^ 2 = a ( a \(\ge\) 0), y = b (b \(\ge\) 0).

Ta có : \(\frac{a+b}{10}=\frac{a-2b}{7}\) và a ^ 2.b ^ 2 = 81.

\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\frac{3b}{3}=b\left(1\right)\)

\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{2a+2b}{20}=\frac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\frac{3a}{27}=\frac{a}{9}\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{a}{9}=b\Rightarrow a=9b\)

Do a ^ 2.b ^ 2 = 81 nên (9b) ^ 2.b ^ 2 = 81\(\Rightarrow81b^4=81\Rightarrow b^4=1\Rightarrow b=1\)( vì b\(\ge\) 0)

Suy ra a = 9.1 = 9

Ta có x ^ 2 = 9 và y ^ 2 = 1

Suy ra : x = \(\pm\) 3, y = \(\pm\) 1

Vậy x = 3 thì y = 1

hoặc x = -3 thì y =1

Bình luận (1)
LT
Xem chi tiết
H24
Xem chi tiết
TL
30 tháng 10 2015 lúc 19:38

Áp dụng t/c của dãy tỉ số bằng nhau ta có: \(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}=\frac{x^2+y^2-\left(x^2-2y^2\right)}{10-7}=\frac{3y^2}{3}=y^2\)

=> x+ y= 10y2 => x= 9y2 => x4 = 81y4

Thay vào x4.y= 81y4.y4 = 81y= 81 => y= 1 => y = 1 hoặc y = - 1

=> x= 9 => x = 3 hoặc x = - 3

Vậy (x;y) = (3;1) ; (3;-1); (-3;1) ;(-3;-1)

Bình luận (0)
HD
Xem chi tiết
H24
23 tháng 8 2017 lúc 11:07

Bài làm

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Bình luận (0)
ND
Xem chi tiết
BC
16 tháng 12 2016 lúc 23:41

Nhân chéo ta được x^2=9y^2, thay vào biểu thức còn lại là tìm được x và y.

Bình luận (0)