\(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}vàx^4nhâny^4=81\)
Tìm x, y biết: \(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}vàx^4.y^4=81\)
\(1.\frac{x}{3}=\frac{y}{4}vàx+y=14\)
\(2.\frac{x}{5}=\frac{y}{3}vàx-y=20\)
\(3.\frac{x}{7}=\frac{y}{4}vàx-y=30\)
\(4.\frac{x}{5}=\frac{y}{7}vàx-y=48\)
\(5.\frac{x}{3}=\frac{y}{6}vàx+y=90\)
\(6.\frac{x}{-2}=\frac{y}{5}vàx+y=12\)
\(7.\frac{x}{4}=\frac{y}{-7}vàx-y=33\)
\(8.\frac{x}{3}=\frac{y}{2}và2x+5y=32\)
\(9.\frac{x}{5}=\frac{y}{2}và3x-2y=44\)
\(10.\frac{x}{3}=\frac{y}{5}và2x+4y=28\)
Tìm x, y biết
mk làm mẫu 2 bài đầu nhé, các bài còn lại bạn làm tương tự, các bài này đều áp dụng tính chất dãy tỉ số bằng nhau
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
suy ra: \(\frac{x}{3}=2\)=> \(x=6\)
\(\frac{y}{4}=2\)=> \(y=8\)
Vậy...
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)
suy ra: \(\frac{x}{5}=10\)=> \(x=50\)
\(\frac{y}{3}=10\)=> \(y=30\)
Vậy...
2x = 5y và x - 2y = -12
2x = 3y = 4z và x + y + z =21
\(\frac{x}{3}=\frac{y}{5}vàx+y=32\)
7x = 3y và x - y =16
\(\frac{2}{3}x=\frac{3}{4}y=\frac{5}{6}zvàx^2+y^2+z^2=724\)
\(\frac{x}{3}=\frac{y}{5};\frac{y}{2}=\frac{z}{7}vàx+y+z=102\)
\(\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-3}{4}vàx-2y+3z=46\)
\(\frac{x}{3}=\frac{y}{16}vàx.y=192\)
a/ 2x = 5y và x - 2y = -12
Ta có: 2x = 5y => \(\frac{x}{5}=\frac{y}{2}\)
Áp dụng: tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5+2}=\frac{x-2y}{5+2.2}=\frac{-12}{9}=-\frac{4}{3}\)
\(\frac{x}{5}=-\frac{4}{3}\Rightarrow x=\frac{-4}{3}.5=-\frac{20}{3}\)
\(\frac{y}{2}=-\frac{4}{3}\Rightarrow y=-\frac{4}{3}.2=-\frac{8}{3}\)
Vậy:.................
b/ 2x = 3y = 4z và x + y + z =21
Ta có: 2x = 3y = 4z
=> \(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
=> \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng: tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{21}{13}\)
\(\frac{x}{6}=\frac{21}{13}\Rightarrow x=\frac{21}{13}.6=\frac{126}{13}\)
\(\frac{y}{4}=\frac{21}{13}\Rightarrow y=\frac{21}{13}.4=\frac{84}{13}\)
\(\frac{z}{3}=\frac{21}{13}\Rightarrow z=\frac{21}{13}.3=\frac{63}{13}\)
Vậy:...............
c/Áp dụng: tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{32}{8}=4\)
\(\frac{x}{3}=4\Rightarrow x=4.3=12\)
\(\frac{y}{5}=4\Rightarrow y=4.5=20\)
Vậy:................
d/ Ta có: 7x = 3y
=> \(\frac{7x}{21}=\frac{3y}{21}\)
=> \(\frac{x}{3}=\frac{y}{7}\)
Áp dụng: tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)
\(\frac{x}{4}=-4\Rightarrow x=\left(-4\right).4=-16\)
\(\frac{y}{7}=-4\Rightarrow y=\left(-4\right).7=-28\)
Vậy:................
1,\(2x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{5}=\frac{2y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{2y}{4}=\frac{x-2y}{5-4}=\frac{-12}{1}=-12\)
Do đó:
\(\frac{x}{5}=-12\Rightarrow x=-60\)
\(\frac{2y}{4}=-12\Leftrightarrow\frac{y}{2}=-12\Rightarrow x=-24\)
Vây x = -60,y = -24
2, 2x = 3y = 4z \(\Rightarrow BCNN\left(2;3;4\right)=12\)
nên \(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{21}{13}\)
Do đó
\(\frac{x}{6}=\frac{21}{13}\Rightarrow x=\frac{6.21}{13}=\frac{126}{13}\)
\(\frac{y}{4}=\frac{21}{13}\Rightarrow y=\frac{4.21}{13}=\frac{84}{13}\)
\(\frac{z}{3}=\frac{21}{13}\Rightarrow z=\frac{3.21}{13}=\frac{63}{13}\)
f/ \(\frac{x}{3}=\frac{y}{5};\frac{y}{2}=\frac{z}{7}\)
=> \(\frac{x}{6}=\frac{y}{10};\frac{y}{10}=\frac{z}{35}\)
=> \(\frac{x}{6}=\frac{y}{10}=\frac{z}{35}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{6}=\frac{y}{10}=\frac{z}{35}=\frac{x+y+z}{6+10+35}=\frac{102}{51}=2\)
\(\frac{x}{6}=2\Rightarrow x=2.6=12\)
\(\frac{y}{10}=2\Rightarrow y=2.10=20\)
\(\frac{z}{35}=2\Rightarrow z=2.35=70\)
Vậy:.................
h/ Đăt: \(\frac{x}{3}=\frac{y}{16}=k\)
\(\frac{x}{3}=k\Rightarrow x=3k\)
\(\frac{y}{16}=k\Rightarrow y=16k\)
Ta có: x. y = 192
=> 3k. 16k = 192
=> k2. (3. 16) = 192
=> k2. 48 = 192
=> k2 = 192 : 48 = 4
=> k = \(\pm\) 2
*Với k = 2
\(\frac{x}{3}=k\Rightarrow x=3.k=3.2=6\)
\(\frac{y}{16}=k\Rightarrow y=16.k=16.2=32\)
*Với k = -2
\(\frac{x}{3}=k\Rightarrow x=3.k=3.\left(-2\right)=-6\)
\(\frac{y}{16}=k\Rightarrow y=16.k=16.\left(-2\right)=-32\)
Vậy:..........
tìm x và y biết
\(\dfrac{x^2+y^2}{10}=\dfrac{x^2-2y^2}{7}vàx^4\cdot y^4=81\)
\(\dfrac{2x^2+2y^2}{20}=\dfrac{x^2-2y^2}{7}=\dfrac{3x^2}{27}=\dfrac{x^2}{9}\)
\(\dfrac{x^2-2y^2}{7}=\dfrac{x^2}{9}\Leftrightarrow9x^2-18y^2=7x^2\Leftrightarrow x^2=9y^2\)
ta có \(x^4.y^4=81\Leftrightarrow\left(9y^2\right)^2.y^4=81\Leftrightarrow y^8=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
mà \(x^2=9y^2\Leftrightarrow y^2=\dfrac{1}{9}\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{1}{3}\\y=-\dfrac{1}{3}\end{matrix}\right.\)
1.\(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}\)và x^4.Y^4=81
Tớ biết cách làm rồi. Đây là lời giải các bạn tham khảo nhé !
Đặt x ^ 2 = a ( a \(\ge\) 0), y = b (b \(\ge\) 0).
Ta có : \(\frac{a+b}{10}=\frac{a-2b}{7}\) và a ^ 2.b ^ 2 = 81.
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\frac{3b}{3}=b\left(1\right)\)
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{2a+2b}{20}=\frac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\frac{3a}{27}=\frac{a}{9}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{a}{9}=b\Rightarrow a=9b\)
Do a ^ 2.b ^ 2 = 81 nên (9b) ^ 2.b ^ 2 = 81\(\Rightarrow81b^4=81\Rightarrow b^4=1\Rightarrow b=1\)( vì b\(\ge\) 0)
Suy ra a = 9.1 = 9
Ta có x ^ 2 = 9 và y ^ 2 = 1
Suy ra : x = \(\pm\) 3, y = \(\pm\) 1
Vậy x = 3 thì y = 1
hoặc x = -3 thì y =1
Biết x;y;z thỏa mãn\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\): vàx-2y+3z=-10 .
Khi đó x+y+z=?
Tìm x,y biết \(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}\)và x^4 * y^4 = 81
Áp dụng t/c của dãy tỉ số bằng nhau ta có: \(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}=\frac{x^2+y^2-\left(x^2-2y^2\right)}{10-7}=\frac{3y^2}{3}=y^2\)
=> x2 + y2 = 10y2 => x2 = 9y2 => x4 = 81y4
Thay vào x4.y4 = 81y4.y4 = 81y8 = 81 => y8 = 1 => y = 1 hoặc y = - 1
=> x2 = 9 => x = 3 hoặc x = - 3
Vậy (x;y) = (3;1) ; (3;-1); (-3;1) ;(-3;-1)
Tìm x,y biết \(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}\)và x4y4=81
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}\) và x4y4=81
Tìm x,y biết:
Nhân chéo ta được x^2=9y^2, thay vào biểu thức còn lại là tìm được x và y.