Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TT
Xem chi tiết
NA
Xem chi tiết
CT
Xem chi tiết
PB
Xem chi tiết
CT
1 tháng 10 2019 lúc 11:40

Bình luận (0)
PD
Xem chi tiết
H24
31 tháng 8 2021 lúc 20:26

 

A=(5m2−8m2−9m2)(−n3+4n3)=−12m2.3n3=−36n5A=(5m2−8m2−9m2)(−n3+4n3)=−12m2.3n3=−36n5

Để A≥0≥0 thì n5≤0⇔n≤0

 
Bình luận (0)
LL
31 tháng 8 2021 lúc 20:29

\(A=\left(5m^2-8m^2-9m^2\right)\left(-n^3+4n^3\right)=-12m^2.3n^3=-36m^2n^3\)

Để A\(\ge0\) thì \(m^2n^3\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\in Q\\n\le0\end{matrix}\right.\)

Bình luận (0)
OO
Xem chi tiết
OO
18 tháng 7 2016 lúc 10:02

\(A=-12m^2.\left(3n^3\right)=-36m^2n^3\)

\(m^2\ge0\)nên \(-36m^2n^3\ge0\Leftrightarrow m=0,n\in Z\)hoặc \(m\in Z,n\le0\)

ủng hộ mik nha xin đó cảm ơn

Bình luận (0)
H24
Xem chi tiết
TT
24 tháng 7 2016 lúc 20:15

Mọi số nguyên tố p lớn hơn 2 đều ko chia hết cho 2 ---> 9 có dạng 2k + 1 ( k thuộc N, k > 0 )

Xét 2 TH:

+ k chẵn ( k = 2n ) ---> p = 2k = 1 = 2.2n + 1 = 4n + 1 

+ k lẻ ( k = 2n - 1 ) ---> p = 2k + 1 = 2.(2n-1) + 1 = 4n - 1 

Vậy p luôn có dạng 4n + 1 hoặc 4n - 1 

Tích nha

Bình luận (0)
HA
24 tháng 7 2016 lúc 20:06

Mọi số nguyên tố p lớn hơn 2 đều không chia hết cho 2 ---> p có dạng 2k+1 (k thuộc N, k > 0) 
...Xét 2 TH : 
...+ k chẵn (k = 2n) ---> p = 2k+1 = 2.2n + 1 = 4n+1 
...+ k lẻ (k = 2n-1) ---> p = 2k+1 = 2.(2n-1) + 1 = 4n-1 
...Vậy p luôn có dạng 4n+1 hoặc 4n-1 

Bình luận (0)
NL
24 tháng 7 2016 lúc 20:31

Moi so nguyen to p lon hon 2 deu khong chia het cho 2 - - - > p co dang 2k + 1(k thuoc n,k>0)

Xet 2 TH :

+k chan (k=2n)- - - > p = 2k + 1=2.2n+1=4n+1

+k le (k=2n-1)- - - > p =2k + 1=2.(2n-1)+1=4n-1

Vay p luon co dang 4n -1

Bình luận (0)
NP
Xem chi tiết
NX
Xem chi tiết