Những câu hỏi liên quan
NC
Xem chi tiết
NT
13 tháng 5 2019 lúc 6:22

ta thấy :

\(\frac{10^{18}+4}{10^{19}-1}>\frac{10^8}{10^{19}-1}\)

nhưng

\(\frac{10^8}{10^{19}-5}\)<\(\frac{10^8}{10^{19}-1}\)

=>\(\frac{10^{18}+4}{10^{19}-1}>\frac{10^8}{10^{19}-5}\)

(dạng toán so sánh, dùng một số trung gian)

Bình luận (0)
SS
Xem chi tiết
IY
23 tháng 9 2019 lúc 12:01

đặt \(A=\frac{10^{18}+1}{10^{19}+1};B=\frac{10^{19}+1}{10^{20}+1}\)

ta có: \(10A=\frac{10^{19}+1+9}{10^{19}+1}=1+\frac{9}{10^{19}+1}\)

\(10B=\frac{10^{20}+1+9}{10^{20}+1}=1+\frac{9}{10^{20}+1}\)

mà \(\frac{9}{10^{19}+1}>\frac{9}{10^{20}+1}\)

=> 10A >10B

=> A > B

Bình luận (0)
NT
Xem chi tiết
NT
Xem chi tiết
JP
Xem chi tiết
DT
22 tháng 2 2018 lúc 21:41

a) Ta có : B = \(\frac{9^{19}+1}{9^{20}+1}\)\(\frac{9^{19}+1+8}{9^{20}+1+8}\)\(\frac{9^{19}+9}{9^{20}+9}\)\(\frac{9\left(9^{18}+1\right)}{9\left(9^{19}+1\right)}\)\(\frac{9^{18}+1}{9^{19}+1}\)= A

                                                       Vậy A > B

b) Ta có : B = \(\frac{10^{2018}-1}{10^{2019}-1}\)\(\frac{10^{2018}-1-9}{10^{2019}-1-9}\)\(\frac{10^{2018}-10}{10^{2019}-10}\)\(\frac{10\left(10^{2017}-1\right)}{10\left(10^{2018}-1\right)}\)\(\frac{10^{2017}-1}{10^{2018}-1}\)= A

                                                                         Vậy A < B.

                    NHỚ K CHO MK VỚI NHÉ !!!!!!!!

Bình luận (0)
H24
22 tháng 2 2018 lúc 21:20

a A lon hon B

Bình luận (0)
TV
22 tháng 2 2018 lúc 21:30

a) 

\(9A=\frac{9^{19}+9}{9^{19}+1}=\frac{9^{19}+1+8}{9^{19}+1}=1+\frac{8}{9^{19}+1}\)

\(9A=\frac{9^{20}+9}{9^{20}+1}=\frac{9^{20}+1+8}{9^{20}+1}=1+\frac{8}{9^{20}+1}\)

ta thấy \(9^{19}+1< 9^{20}+1\Rightarrow\frac{8}{9^{19}+1}>\frac{8}{9^{20}+1}\)

\(\Rightarrow9A>9B\Rightarrow A>B\)

Bình luận (0)
MK
Xem chi tiết
CL
Xem chi tiết
DH
8 tháng 12 2016 lúc 14:18

Ta có: \(A=\frac{10^{18}+1}{10^{19}+1}>\frac{10.\left(10^{17}+1\right)}{10.\left(10^{18}+1\right)}=\frac{10^{17}+1}{10^{18}+1}\)

Vậy A < B

Bình luận (0)
KL
29 tháng 3 2017 lúc 20:16

lolllllo

Bình luận (0)
CL
Xem chi tiết
SL
8 tháng 2 2018 lúc 17:11

Vì \(\frac{10^{18}+1}{10^{19}+1}< 1\Rightarrow B=\frac{10^{18}+1}{10^{19}+1}< \frac{10^{18}+1+9}{10^{19}+1+9}\)

\(\Rightarrow B< \frac{10^{18}+10}{10^{19}+10}\)

\(\Rightarrow B< \frac{10\left(10^{17}+1\right)}{10\left(10^{18}+1\right)}\)

\(\Rightarrow B< \frac{10^{17}+1}{10^{18}+1}\)

\(\Rightarrow B< A\)

Vậy A > B.

Bình luận (0)
NB
Xem chi tiết