S = 1/4 + 1/16 + 1/17 + 1/18 + 1/61 + 1/62 + 1/63. So sanh S voi 1/2
Cho S = 1/11+1/12+1/13+1/14+115+1/16+1/17+1/18+1/19+1/20
hãy so sanh S và 1/2
so sanh 1/15+1/16+1/17+1/18+......+1/30 voi 1/2
\(\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+...+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{16}{30}>\frac{15}{30}=\frac{1}{2}\)
Cho S = 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16 + 1/17 + 1/18 + 1/19 + 1/20.
Hay so sanh S va 1/2
CHO S = 1/5 + 1/13 +1/14 +1/15 +1/61 +1/62 +1/63. HÃY SO SÁNH S VÀ 1/2
GIÚP MIH`, MIH` TICK NHA
S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)
suy ra S<1/5+1/12.3+1/60.3
S<1/5+1/4+1/20
S<1/2
S=\(\frac{1}{5}\)+(\(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\)) + (\(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\))
=> S< \(\frac{1}{5}+\frac{1}{12}.3+\frac{1}{60}.3\)
S<\(\frac{1}{5}+\frac{1}{4}+\frac{1}{20}\)
=> S< \(\frac{1}{2}\)
Vậy S<\(\frac{1}{2}\)
Cho tổng
S= 1/17+1/18+1/19+...+1/62+1/63+1/64
Chứng minh rằng 1<S<2
Ta có :
\(S=\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+.......+\frac{1}{62}+\frac{1}{63}+\frac{1}{64}\)
\(\Rightarrow S< \frac{1}{17}+\frac{1}{17}+......+\frac{1}{17}+\frac{1}{17}+\frac{1}{17}\)
\(\Rightarrow S< \frac{1}{17}.48\)
\(\Rightarrow S< \frac{48}{17}\)
\(\Rightarrow S< 2\)( 1 )
Lại có :
\(S>\frac{1}{64}+\frac{1}{64}+.........+\frac{1}{64}+\frac{1}{64}+\frac{1}{64}\)
\(\Rightarrow S>\frac{1}{64}.48\)
\(\Rightarrow S>\frac{3}{4}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\frac{3}{4}< S< 2\)
Vậy \(1< S< 2\left(ĐPCM\right)\)
s= 1/5+1/13+1/14+1/15+1/61+1/62+1/63.CMR:3/7<S<1/2
chứng minh rằng s=1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/2
Cho S=1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20
HÃY SO SÁNH S VOI 1/2
Chứng minh S = 1/5 +1/13+ /14+1/15+1/61+1/62+1/63 < 1/2
Ta có:
\(\frac{1}{5}=\frac{1}{5}\)
\(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}
Ta có: \(S=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)