Những câu hỏi liên quan
H24
Xem chi tiết
VB
Xem chi tiết
H24
21 tháng 7 2015 lúc 19:25

\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

=> \(\frac{1}{x+y}=\frac{x+y}{xy}\)

=> (x + y)2 = xy

Vì (x + y)2 >= 0 (1)

Mà xy < 0 (vì x, y trái dấu) (20

Từ (1) và (2) => Ko tồn tại x, y thỏa mãn đề bài.

Cho **** nha

Bình luận (0)
LL
Xem chi tiết
DL
5 tháng 6 2016 lúc 5:50
x;y đối nhau thì x+y = 0, Phân số \(\frac{1}{x+y}\)vô nghĩa nên x;y đối nhau không phải là nghiệm. (1)Ta lại có: \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\Leftrightarrow\frac{1}{x+y}=\frac{x+y}{xy}\Leftrightarrow xy=\left(x+y\right)^2>0\)(*) với mọi x;y không đối nhau.Nếu x,y trái dấu thì tích xy <0 không thỏa mãn (*) nên không phải là nghiệm của bài toán (2).Từ (1) và (2) suy ra không tồn tại số hữu tỷ x,y trái dấu, không đối nhau thỏa mãn đẳng thức của đề bài. (ĐPCM)
Bình luận (0)
OF
Xem chi tiết
TD
2 tháng 7 2017 lúc 16:05

Ta dùng phương pháp phản chứng :

giả sử tồn tại hai số hữu tỉ x và y thỏa mãn đẳng thức\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

suy ra : \(\frac{1}{x+y}=\frac{y+x}{xy}\Leftrightarrow\left(x+y\right)^2=xy\)

đẳng thức này không xảy ra vì \(\left(x+y\right)^2>0\), còn xy < 0 ( do x,y là hai số trái dấu , không đối nhau )

Vậy không tồn tại hai số hữu tỉ x và y trái dấu , không đối nhau thỏa mãn đề bài

Bình luận (0)
TN
Xem chi tiết
NM
6 tháng 9 2016 lúc 21:43

Giả sử tồn tại x,y trái dấu thỏa mãn

Khi đo ta có \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)

=> (x+y)2=xy 

Đẳng thức trên là vô lí vì (x+y)2\(\ge\)0

Còn xy nhỏ hơn 0 vì x,y trái dấu

Vậy ko có x,y trái dấu thỏa mãn đề bài

Bình luận (0)
DN
6 tháng 9 2016 lúc 21:43

1/x+y=1/x+1/y
1/x+y=x+y/xy( nhân vào như bài toán bình thường)
=>(x+y)(x+y)=1.xy
=>(x+y)2=xy
x, y cùng dấu thì phép tính mới dương

Bình luận (0)
AR
6 tháng 9 2016 lúc 21:49

\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)\(\Rightarrow\frac{1}{x+y}=\frac{x+y}{xy}\)

=> (x+y)2=xy

Vì (x+y)2 \(\ge\)0                                     (1)

Mà xy < 0( vì x,y trái dấu)                          (2)

Từ (1) và (2)=> Ko tồn tại x,y thỏa mãn đề bài

Bình luận (0)
KM
Xem chi tiết
LT
Xem chi tiết
CC
Xem chi tiết
H24
27 tháng 5 2015 lúc 9:54

ta dùng pháp phản chứng  

giả sử tồn tại 2 số hữu tỉ x và y  trái dấu thỏa mãn đẳng thức \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

=> \(\frac{1}{x+y}=\frac{y+x}{xy}\) <=> \(\left(x+y\right)^2\) = xy

điều này vô lí vì \(\left(x+y\right)^2\) > 0 còn xy < 0( vì x và y trái dấu , không đối nhau)

vậy không tồn tại 2 số hữu tỉ x và y trái dấu , không đối nhau thảo mãn đề bài

 

Bình luận (0)
GC
27 tháng 5 2015 lúc 9:49

\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}

=>\frac{1}{x+y}=\frac{y}{xy}+\frac{x}{xy}

=>\frac{1}{x+y}=\frac{x+y}{xy}

=>(x+y)^2 = xy

mà (x+y)^2 \geq 0

=>  xy \geq 0  => ko tồn tại x,y trái dấu

Bình luận (0)
DV
27 tháng 5 2015 lúc 9:50

Ta dùng phương pháp chứng minh phản chứng:

Giả sử tồn tại hai số hữu tỉ x và y thỏa mãn đẳng thức \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

Suy ra \(\frac{1}{x+y}=\frac{y+x}{xy}\) \(\Leftrightarrow xy=\left(x+y\right).\left(x+y\right)\) \(\Leftrightarrow\left(x+y\right)^2=xy\)

Vì x + y trái dấu \(\Rightarrow\) (x + y)2 > 0 nên xy > 0 nhưng x và y là hai số trái dấu, không đối nhau nên xy < 0. Do đó đẳng thức trên không xảy ra.

             Vậy không tồn tại hai số hữu tỉ x và y trái dấu, không đối nhau thỏa mãn đề bài.

Bình luận (0)
PT
Xem chi tiết
HH
28 tháng 8 2016 lúc 20:05

Gỉa sử tồn tại hai số hữu tỉ x, y trái dấu ko đối nhau tm \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\) <=>  1 / x+ y  =  x + y / xy  <=>(x+ y )^2 = xy    (1)        ( nhân chéo hai vế) 

Do x và y là hai số hữu tỉ trái dấu nên xy<0 mà (x+ y)^2 lớn hơn hoặc bằng 0 với mọi x và y  => (x+y)^2 >xy trái với (1)  

Suy ra điều giả sử ko xảy ra => ko có hai số nào tm => đpcm

Bình luận (0)