Tìm số tự nhiên nhỏ nhất chia 3 dư 1, chia 7 dư 2 và chia hết cho 5.
a. Tìm số tự nhiên nhỏ nhất khác 5 khi chia số đó cho 70 , 140 , 350 , 700 đều dư 5
b. Tìm số tự nhiên nhỏ nhất khi chia cho 3 dư 1 chia cho 5 dư 3 và chia cho 7 dư 5
c. Tìm số tự nhiên nhỏ nhất khi chia cho 5 dư 1 , chia cho 7 dư 5
d. Tìm số tự nhiên a nhỏ nhất, biết rằng a chia cho 5,7,9 thì số dư lần lượt là 3,4,5
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
a) Tìm số tự nhiên nhỏ nhất chia 4 dư 3, chia 5 dư 4, chia 6 dư 5, và chia hết cho 7
b) Tìm số tự nhiên nhỏ nhất có 3 chữ số sao cho chia 11 dư 5, chia 13 dư 8
Tìm 1 số tự nhiên nhỏ nhất sao cho số đó chia cho 2 dư 1;chia cho 3 dư 2;chia cho 4 dư 3;chia cho 5 dư 4;chia cho 6 dư 5 và chia hết cho 7
Gọi a là số cần tìm.
a chia 6 dư 5 nên a + 1 chia hết cho 6
a chia 5 dư 4 nên a + 1 chia hết cho 5
a chia 4 dư 3 nên a + 1 chia hết cho 4
a chia 3 dư 2 nên a + 1 chia hết cho 3
a chia 2 dư 1 nên a + 1 chia hết cho 2
Vậy a + 1 là một số chia hết cho 6; 5; 4; 3; 2, mà số nhỏ nhất chia hết cho 6; 5; 4; 3; 2 là 60 nên:
a + 1 = 60
a = 60 - 1
a = 59
Số cần tìm là 59
Hiền Trần ơi,bạn còn thiếu 1 phần, chia hết cho 7 bạn bỏ đi rồi à
Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 2 dư 1, chia cho 5 dư 1, chia cho 7 dư 3 và chia hết cho 9.
Vì a chia cho 2 dư 1 nên a là số lẻ.
Vì a chia cho 5 dư 1 nên a có tận cùng là 1 hoặc 6.
Do đó a phải có tận cùng là 1.
- Nếu a là số có hai chữ số thì do a chia hết cho 9 nên a = 81, loại vì 81 : 7 = 11 dư 4 (trái với điều kiện của đề bài).
- Nếu a là số có ba chữ số thì để a nhỏ nhất thì chữ số hàng trăm phải là 1. Khi đó để a chia hết cho 9 thì theo dấu hiệu chia hết cho 9 ta có chữ số hàng chục phi là 7 (để 1 + 7 + 1 = 9 9).
Vì 171 : 7 = 24 dư 3 nên a = 171.
Vậy số phải tìm nhỏ nhất thỏa mãn điều kiện của đề bài là 171.
tìm số tự nhiên a nhỏ nhất sao cho a chia 2 dư 1, chia cho 5 dư 1 , chia 7 dư 3 và chia hết cho 9
tìm số tự nhiên a nhỏ nhất sao cho a :2 dư 1;chia 5 dư 1; chia 7 dư 3 và chia hết cho 9
a chia 2 dư 1 \(\Rightarrow\)a có chữ số tận cùng là 1; 3; 5; 7; 5
a chia 5 dư 1 \(\Rightarrow\)a có chữ số tận cùng là 1; 6
Từ 3 điều trên\(\Rightarrow\)a có chữ số tận cùng là 1
a chia 7 dư 3 \(\Rightarrow\)a có thể là: 3; 10; 17; 24; 31; 38; 45; 52; 59; 66; 73;...
Từ 4 điều trên\(\Rightarrow\)a có thể là: 31; 101; 171; 241;...
Trong dãy số đó chỉ có số 171 là số nhỏ nhất chia hết cho 9; chia 2 dư 1; chia 5 dư 1; chia 7 dư 3
Vậy số đó là 171
số đó là 171 nha bạn nhớ kb với mình
tìm số tự nhiên nhỏ nhất biết ràng số đó chia 4 dư 1; chia 5 dư 2; chia 6 dư 3; chia 7 dư 4 và chia hết cho 11
Gọi số cần tìm là A. Khi đó A + 2 là số chia hết cho 5; 6 và 7.
Vậy số nhỏ nhất chia hết cho 5; 6; 7 là: 5 x 6 x 7 = 210
Số cần tìm là: 210 - 2 = 208
ĐS: 208
Bạn xem lời giải ở đây
Câu hỏi của Cao Nhật Nam - Toán lớp 6 - Học toán với OnlineMath
1/Tính tổng tất cả các số có 3 chữ số chia hết cho 4 dư 1
2/ tìm số tự nhiên nhỏ nhất (khác 0) chia hết cho 2,3,4,5,6,7,8,9,10,11
3/Tìm số tự nhiên nhỏ nhất chia 2,5 dư 1 chia 7 dư 6 , chia 9 dư 1
4/ 1 số chia hết cho 15 dư 7 , chia 17 dư 11 . Hỏi số đó chia 255 dư bao nhiêu
5/ 1 số chia cho 69 dư 68. Hỏi số đó chia 23 dư ?
A= 4p+3 = 17m+9= 19n+13
A+25 =4p+28= 17m+34 =19n+38
nhận thấy A+25 đồng thời chia hết cho 4, 17 và 19
vậy A+25 chia hết cho 4.17.19 =1292
A chia 1292 dư (1292-25) = 1267
Gọi số đó là a
a= 4p+3 = 17m+9= 19n+13
a+25 =4p+28= 17m+34 =19n+38
a+25 chia hết cho 4, 17, 19
a+25 chia hết cho 4.17.19 =1292
Vậy a chia 1292 dư (1292-25) = 1267
Tìm số tự nhiên nhỏ nhất chia 3 dư 2, chia 4 dư 3, chia 5 dư 4 và chia hết cho 7
Gọi số cần tìm đó là a
Ta có : \(\hept{\begin{cases}a:3\text{ dư 2}\\a:4\text{ dư 3}\\a:5\text{ dư 4}\end{cases}}\Rightarrow\hept{\begin{cases}a+1⋮3\\a+1⋮4\\a+1⋮5\end{cases}}\Rightarrow a+1\in BC\left(3;4;5\right)\)
Vì ƯCLN(3;4;5) = 1
=> BCNN(3;4;5) = 3.4.5 = 60
mà BC(3;4;5) = B(60)
=> a + 1 \(\in B\left(60\right)\)
=> a + 1 \(\in\left\{0;60;120;180;....\right\}\)
=> \(a\in\left\{-1;59;119;179;...\right\}\)
lại có a nhỏ nhất và a \(⋮\)7
=> a = 119
Vậy số tự nhiên nhỏ nhất cần tìm là 119