Những câu hỏi liên quan
BB
Xem chi tiết
TT
10 tháng 1 2021 lúc 15:03

\(\Leftrightarrow x^2+4y^2+4xy-2\left(x+2y\right)+1=5-4y^2\)

\(\Leftrightarrow\left(x+2y+1\right)^2=5-4y^2\)

TH1 : \(4y^2=0\)

Pt \(\Leftrightarrow\left(x+2y+1\right)^2=5\)Mà 5 không là số chính phương.

=> Không có số nguyên x nào thỏa mãn.

TH2 : \(4y^2>0\)

Do \(\left(x+2y+1\right)^2\ge0\Rightarrow5\ge4y^2\)

Mà y nguyên

=> \(4y^{2}=4\)

=> y ∈ {1 ; -1}

Với y = 1

=> x + 3 = 1

=> x = -2 (tm)Với y = -1

=> x - 1 = 1

=> x = 2 (tm)Vậy..

Bình luận (1)
MN
Xem chi tiết
MN
12 tháng 10 2019 lúc 22:05

Thầy mới chữa ạ :33

x2 + 8y2 + 4xy - 2x - 4y = 4

x2 + 4y2 + 1 + 4xy - 2x - 4y = 5 - 4y2

( x + 2y - 1 )2 + 4y2 = 5

Vì \(4y^2\ge0\)    \(4y^2\in Z\)

    \(4y^2⋮4\)       

TH1 : 4y2 = 0

=> y = 0

=> ( x + 2y - 1)2 = 5

Mà x là số nguyên

      5 không phải là số chính phương

=> Loại

TH2 : 4y2 > 0

Mà y thuộc Z

=> 4y2 = 4

=> y thuộc { -1;1 }

Với y = 1 => ( x + 1 )2 = 1 => x thuộc { 0;-2 }

Với y = -1 => ( x - 2)2 = 1 => x  thuộc { 2;4 }

Vậy \(\left(x;y\right)\in\left\{\left(0;1\right);\left(2;-1\right);\left(2;-1\right);\left(4;-1\right)\right\}\)

     

Bình luận (0)
NA
12 tháng 10 2019 lúc 13:07

\(\Leftrightarrow2\left(x^2+2xy+y^2\right)-\left(x^2+2x+1\right)+6\left(y^2-\frac{2}{3}y+\frac{1}{9}\right)-\frac{11}{3}=0\)

đến đây ,Áp dụng HĐT vào 2 cái đầu rồi giải nốt nha!^_^

Bình luận (0)
BL
Xem chi tiết
LD
15 tháng 8 2018 lúc 12:34

jupo voi

Bình luận (0)
DT
Xem chi tiết
GL
Xem chi tiết
H24
Xem chi tiết
BT
27 tháng 10 2021 lúc 10:01

Đặt \(5x^2+3y^2+4xy-2x+8y+8=A\)

ta có \(5x^2+3y^2+4xy-2x+8y+8< 0\)

<=>\(\left(2x+y\right)^2+\left(x-1\right)^2+2\left(y+2\right)^2< 1\)

vì x,y là số nguyên nên A cũng nguyên 

mà A<1 nên A=0 (vì A là toonngr của 3 số chính phương)

=>\(\hept{\begin{cases}2x+y=0\\x-1=0\\y+2=0\end{cases}}\)

bạn tự giải nha

Bình luận (1)
 Khách vãng lai đã xóa
LH
Xem chi tiết
PH
11 tháng 10 2018 lúc 17:25

      \(2x^2-4x+4xy+4y^2+4=0\)

\(\Rightarrow\left(x^2-4x+4\right)+\left(x^2+4xy+4y^2\right)=0\)

\(\Rightarrow\left(x^2-2.x.2+2^2\right)+\left(x^2+2.x.2y+\left(2y\right)^2\right)=0\)

\(\Rightarrow\left(x-2\right)^2+\left(x+2y\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-2=0\\x+2y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=-1\end{cases}}\)

Chúc bạn học tốt.

Bình luận (0)
NA
Xem chi tiết
TH
Xem chi tiết