Tìm ước chung của 2n + 1 và 3n + 1 với n \(\in\)N.
Tìm ước chung của 2n + 1 và 3n + 1 với n thuộc N .
Gọi d là Ưcln của 2n + 1 và 3n + 1
Khi đó : 2n + 1 chia hết cho d và 3n + 1 chia hết cho d
<=> 3.(2n + 1) chia hết cho d và 2,(3n + 1) chia hết cho d
=> 6n + 3 chia hết cho d và 6n + 2 chia hết cho d
=> (6n + 3) - (6n + 2) chia hết cho d => 1 chia hết cho d => d = 1
=>ƯCLN của 2n + 1 và 3n + 1 là 1
=> ƯC của 2n + 1 và 3n + 1 là -1 ; 1
mình là đội tuyển toán lớp 7 rùi nhưng nhớ bài này lém :
Gọi d thuộc ước chung của n+3 ; 2n+5 ( d thuộc Z )
=> + ) n+3 chia hết cho d hay 2.(n+3) chia hết cho d
+) 2n+5 chia hết cho d
=> 2(n+3) - (2n +5) chia hết cho d
<=> 2n+6 -2n-5 chia hết cho d
<=> 1 chia hết cho d => d thuộc { 1 : -1 }
Nhớ sử dụng kí hiệu nhá
tìm các ước chung của 2n-1 và 3n+1 với n thuộc N*
gọi ƯC(2n-1,3n+1) là d (d khác 0)
Ta có 2n-1 chia hết cho d
=> 3(2n-1) chia hết cho d <=> 6n-3 chia hết cho d (1)
Lại có 3n+1 chia hết cho d
=> 2(3n+1) chia hết cho d <=> 6n+2 chia hết cho d (2)
Từ (1) và (2) => (6n+2-6n+3) chia hết cho d <=> 5 chia hết cho d
=> d là ước của 5
=> d=-1,1,-5,5
=> ước chung của 2n-1 và 3n+1 là -1,1,-5,5
tìm ước chung của 2 số
2n+1 và 3n+1 với n thuộc N
tìm ước chung của 2n + 1 và 3n + 1 ( n E N )
Gọi ƯC(2n+1;3n+1)=d
Ta có:
+/2n+1 chia hết cho d=>3(2n+1) chia hết cho d
hay 6n+3 chia hết cho d(1)
+/3n+1 chia hết cho d=>2(3n+1) chia hết cho d
hay 6n+2 chia het cho d(2)
Từ (1) va (2) =>(6n+3-6n-2) chia hết cho d
=>1 chia hết cho d
=>d la ước cua 1
=>d thuộc tập hợp 1 ; -1
=>tập hợp ước chung của 2n+1 và 3n+1 là -1;1
Tìm Ước chung lớn nhất của n3+2n và n4+3n+1 với mọi n thuộc N
Câu hỏi của shushi kaka - Toán lớp 6 - Học toán với OnlineMath
tập hợp các ước chung của 2n +1 và 3n + 1 (n\(\in\)N)
B1
a) Tìm ước chung của n+1; 3n+2(n thuộc N)
b) Tìm ước chung của 2n+3 và 3n+4 (n thuộc N)
B2 Biết rằng 2 số 5n+6 và 8n+7 không phải là 2 số nguyên tố cùng nhau. tìm ước chung lớn nhất ( 5n+6; 8n+7) n thuộc N
tìm ước chung của 3n + 13 và n + 4
ước chung của 2n + 5 và 3n + 2 có thể bằng 7 không
tui cần gấp nhe
a, Tìm ước chung của 3n + 13 và n + 4
Gọi ước chung lớn nhất của 3n + 13 và n + 4 là d
Ta có: 3n + 13 ⋮ d; n + 4 ⋮ d ⇒ 3.(n+4) ⋮ d ⇒ 3n + 12 ⋮ d
⇒ 3n + 13 - (3n + 12) ⋮ d
⇒ 3n + 13 - 3n - 12 ⋮ d
⇒ ( 3n - 3n) + (13 - 12) ⋮ d
⇒ 1⋮ d
d \(\in\) {-1; 1}
\(\Rightarrow\) ƯC( 3n + 13; n + 4) = { -1; 1}
b, Dùng phương pháp phản chứng:
Giả sử ước chung của 2n + 5 và 3n + 2 là 7 thì ta có:
2n + 5⋮ 7; ⇒ 3.(2n + 5) ⋮ 7 ⇒ 6n + 15 ⋮ 7
3n + 2 ⋮ 7 ⇒ 2.( 3n + 2) ⋮ 7 ⇒ 6n + 4 ⋮ 7
⇒ 6n + 15 - (6n + 4) ⋮ 7
⇒ 6n + 15 - 6n - 4 ⋮ 7
⇒ 11 ⋮ 7 ⇒ 4 ⋮ 7 (vô lý)
Vậy điều giả sử là sai
Hay 7 không thể là ước chung của 2n + 5 và 3n + 2
Ta thấy :
\(3n+13=3n+12+1=3\left(n+4\right)+1\)
\(\Rightarrow UC\left(3n+13;n+4\right)=1\)
Tìm ước chung lớn nhất của 2n+1 va 3n+1 ( n ϵ N )
Goi ƯCLN(2n+1;3n+1) là d
=> \(3\left(2n+1\right)-2\left(3n+1\right)\) chia hết cho d
=> \(6n+3-6n-2\) chia hết cho d
=> 1 chia d
=> d\(\inƯ_{\left(1\right)}\)
=> d=1 ; d= - 1
Mà d lớn nhất
=> d=1
Đặt UCLN (2n+1 và 3n+1)=d
\(\Rightarrow\) 2n+1 chia hết cho d và 3n+1 chia hết cho d
\(\Rightarrow\) 6n+3 chia hết cho d và 6n+2 chia hết cho d
\(\Rightarrow\) 1 chia hết cho d
\(\Rightarrow\) d=1 \(\Rightarrow\)ƯCLN (2n+1 và 3n+1)=1
Gọi đ=UCLN(2n+1;3n+2) 2n+1 chia hết cho d và 3n+1 chia hết cho d => 6n+3 chia hết cho d và 6n+2 chia hết cho d => trừ nhau ta có 1 chia hết cho d. Vậy d=1 kết luận UCLN của ... =1 . (Dùng dấu ngoặc nhọn cho 2 vế cùng chia hết cho d.)