Những câu hỏi liên quan
NA
Xem chi tiết
H24
Xem chi tiết
CL
Xem chi tiết
AN
24 tháng 3 2018 lúc 10:16

a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.

Giả sử số lẻ đó là x thì ta có

\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)

\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)

\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)

Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm

Bình luận (0)
AN
24 tháng 3 2018 lúc 10:19

b/ \(9x^2+2=y^2+y\)

\(\Leftrightarrow36x^2+8=4y^2+4y\)

\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)

\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)

Bình luận (0)
AN
24 tháng 3 2018 lúc 10:22

Câu còn lại thì chia cả 2 vế cho \(5^x\)rồi làm tiếp

Bình luận (0)
VK
Xem chi tiết
H24
27 tháng 3 2016 lúc 18:51

KO TỀM ĐC VÌ X NGUYÊN TỐ THÌ Y KO NGUYÊN TỐ .(CHƯA CHẮC ĐÃ DÚNG NHA)

Bình luận (0)
NT
Xem chi tiết
DL
Xem chi tiết
ND
Xem chi tiết
LP
28 tháng 6 2023 lúc 6:44

 Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).

 Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,

Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)

Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.

Như vậy, \(x=y=1\)

 Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.

Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)

Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn. 

Vậy pt đã cho không có nghiệm nguyên dương.

 

Bình luận (0)
ND
28 tháng 6 2023 lúc 14:24

Chị độc giải sau khi em biết làm thôi à.

Bình luận (0)
HY
Xem chi tiết
SO
11 tháng 6 2019 lúc 14:13

2. 

\(\frac{2}{2x+1}=\frac{y}{4}\)

\(\Rightarrow y.\left(2x+1\right)=2.4=8\)

\(\Rightarrow y;2x+1\inƯ\left(8\right)\)

Mà 2x + 1 là số lẻ \(\Rightarrow2x+1\in\left\{-1;1\right\}\)

Ta có bảng:

2x+1-11
y-88
x-1
Bình luận (0)
NT
Xem chi tiết
MH
13 tháng 2 2016 lúc 15:02

Ta có: (x - 2)2 > 0; (y - 3)2 > 0

Mà (x - 2)2 . (y - 3)2 = -4 < 0 (vô lí)

Vậy không có x; y thỏa mãn.

Bình luận (0)