Những câu hỏi liên quan
NL
Xem chi tiết
LD
2 tháng 8 2017 lúc 15:57

Ta có : \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{n\left(n+3\right)}=\frac{89}{270}\)

\(\Rightarrow\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{n\left(n+3\right)}=\frac{267}{270}\)

\(\Rightarrow1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{n}-\frac{1}{n+3}=\frac{267}{270}\)

\(\Rightarrow1-\frac{1}{n+3}=\frac{267}{270}\)

=> \(\frac{1}{n+3}=\frac{1}{90}\)

=> n + 3 = 90

=> n = 87 

Bình luận (0)
H24
2 tháng 8 2017 lúc 15:58

Nhân cả 2 vế với 3 ta được:

\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{n\left(n+3\right)}=\frac{89}{90}.\)

Vậy tử số của các phân số trên đã bằng hiệu của 2 thừa số ở mẫu số.(Ngoại trừ P/S\(\frac{89}{90}.\))

=> ta được:

\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{n}-\frac{1}{n+3}=\frac{89}{90}.\)

Rút gọn hết ta được :

\(1-\frac{1}{n+3}=\frac{89}{90}\)

\(\frac{1}{n+3}=1-\frac{89}{90}\)

\(\frac{1}{n+3}=\frac{1}{90}.\)

Vì 1=1 => n+3=90

          n = 90-3

          n=87

Vậy n=87.

                                                                    Đ/S:87

Bình luận (0)
DP
2 tháng 8 2017 lúc 16:34

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.11}+....+\frac{1}{n\left(n+3\right)}=\frac{89}{270}\)

\(\Leftrightarrow\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{n}-\frac{1}{n+3}\right)=\frac{89}{270}\)

\(\Leftrightarrow\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{n+3}\right)=\frac{89}{270}\div\frac{1}{3}\)

\(\Leftrightarrow\frac{1}{1}-\frac{1}{n+3}=\frac{89}{90}\)

\(\Leftrightarrow\frac{1}{n+3}=\frac{1}{1}-\frac{89}{90}=\frac{1}{90}\)

\(\Leftrightarrow n+3=90\Rightarrow n=90-3=87\)

Bình luận (0)
H24
Xem chi tiết
HV
1 tháng 4 2019 lúc 20:32

*S=1-1/4+1/4-1/7+1/7-1/11+1/11-1/14+1/14-1/17

S=1-1/17=16/17

*M=2(1/1.2+1/2.3+...+1/15.16)

M=2(1-1/2+1/2-1/3+..+1/15-1/16)

M=2(1-1/16)

M=2.15/16

M=15/8

Bình luận (0)
H24
1 tháng 4 2019 lúc 20:40

:w

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.11}+\frac{3}{11.14}+\frac{3}{14.17}\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)

\(S=1-\frac{1}{17}\)

\(S=\frac{16}{17}\)

\(M=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{15.16}\)

\(M=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{15}-\frac{1}{16}\right)\)

\(M=2.\left(1-\frac{1}{16}\right)\)

\(M=2.\frac{15}{16}\)

\(=\frac{30}{16}=\frac{15}{8}\)

Bình luận (0)
TD
Xem chi tiết
ND
4 tháng 9 2017 lúc 7:58

A=12+22+...+992

2A=22+32+...+1002

2A-A=(22+32+...+1002)-(12+22+...+992)

A=1002-12

A=10000-1

A=9999

Bình luận (0)
NC
Xem chi tiết
NM
17 tháng 7 2018 lúc 15:47

Đặt biểu thức trên là A. Ta có:

3A = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/2016/2019

3A = 1-1/4 +1/4-1/7+1/7-1/10/+ ... + 1/2016-1/2019

3A = 1-1/2019=2018/2019

A =1009/2019

Bình luận (0)
NN
17 tháng 7 2018 lúc 15:49

Ta có:

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2016.2019}\)

\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2016.2019}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{2016}-\frac{1}{2019}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{2019}\right)\)

\(=\frac{1}{3}.\frac{2018}{2019}\)

\(=\frac{2018}{6057}\)

Bình luận (0)
H24
17 tháng 7 2018 lúc 15:51

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2016.2019}\)

\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2016.2019}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2016}-\frac{1}{2019}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{2019}\right)\)

\(=\frac{1}{3}.\left(\frac{2019}{2019}-\frac{1}{2019}\right)\)

\(=\frac{1}{3}.\frac{2018}{2019}\)

\(=\frac{2018}{6057}\)

Bình luận (0)
NN
Xem chi tiết
H24
26 tháng 6 2019 lúc 15:54

Bài 1:

Có: \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{b+c+a};\frac{c}{a+c}>\frac{c}{a+c+b}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\\ \Rightarrow A>\frac{a+b+c}{a+b+c}\Rightarrow A>1\left(1\right)\)

Lại có: \(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{b+a}{b+c+a};\frac{c}{a+c}< 1\Rightarrow\frac{c}{a+c}< \frac{c+b}{a+c+b}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}< \frac{a+c}{a+b+c}+\frac{b+a}{b+c+a}+\frac{c+b}{a+c+b}\\ \Rightarrow A< \frac{a+c+b+a+c+b}{a+b+c}\Rightarrow A< \frac{2a+2b+2c}{a+b+c}\Rightarrow A< \frac{2\left(a+b+c\right)}{a+b+c}\Rightarrow A< 2\left(2\right)\)

Từ (1) và (2) \(\Rightarrow1< A< 2\left(đpcm\right)\)

Bình luận (0)
NT
26 tháng 6 2019 lúc 15:43

Bài 2 ;

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.11}+...+\frac{3}{91.94}\)

= \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{91}-\frac{1}{94}\)

= \(1-\frac{1}{94}< 1\)

Vậy ........(đpcm )

Bình luận (0)
H24
26 tháng 6 2019 lúc 16:01

\(a,b,c\in N^{sao}\Rightarrow\frac{a}{b+a}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\left(1\right)\)

\(Taco:\frac{a+n}{b+n}>\frac{a}{b}\left(a,b,n\in N^{sao}\right)\Rightarrow A< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=2\left(2\right)\)\(\left(1\right);\left(2\right)\Rightarrow1< A< 2\)

Bình luận (0)
H24
Xem chi tiết
NN
17 tháng 7 2018 lúc 11:11

Ta có : 1/ 1.4 + 1/ 4.7 + .... + 1/ 2016.2019 .

      = 1 - 1/4 + 1/4 - 1/7 + ... + 1/2016 - 1/2019 .

      = 1 - 1/2019 .

      = 2018/2019 .

Bình luận (0)
NH
17 tháng 7 2018 lúc 11:14

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2016.2019}\)

\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2016.2019}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2016}-\frac{1}{2019}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{2019}\right)\)

\(=\frac{1}{3}.\frac{2018}{2019}\)

\(=\frac{2018}{6057}\)

_Chúc bạn học tốt_

Bình luận (0)
H24
Xem chi tiết
BD
6 tháng 7 2023 lúc 16:14

\(S=\dfrac{1}{1\cdot4}+\dfrac{1}{4\cdot7}+...+\dfrac{1}{304\cdot307}\)

\(3S=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{304\cdot307}\)

\(\)\(3S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{304}-\dfrac{1}{307}\)

\(3S=1-\dfrac{1}{307}\)

\(3S=\dfrac{306}{307}\)

\(S=\dfrac{306}{307}\cdot\dfrac{1}{3}\)

\(S=\dfrac{102}{307}\)

Bình luận (0)
NT
6 tháng 7 2023 lúc 16:16

\(S=\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{304.307}\)

\(S=\dfrac{1}{3}\left(1-\dfrac{1}{4}\right)+\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}\right)+...+\dfrac{1}{3}\left(\dfrac{1}{304}-\dfrac{1}{307}\right)\)

\(S=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...-\dfrac{1}{304}+\dfrac{1}{304}-\dfrac{1}{307}\right)\)

\(S=\dfrac{1}{3}\left(1-\dfrac{1}{307}\right)\)

\(S=\dfrac{1}{3}.\dfrac{306}{307}\)

\(S=\dfrac{102}{307}\)

Bình luận (0)
NN
Xem chi tiết
NN
14 tháng 5 2019 lúc 19:43

ai nhanh mk tích cho nào cảm ơn

Bình luận (0)
NV
Xem chi tiết
G0
2 tháng 10 2023 lúc 22:10

`#3107.101107`

1.

a)

`1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(100*103)`

`= 1/3 * (3/(1*4) + 3/(4*7) + 3/(7*10) + ... + 3/(100*103) )`

`= 1/3 * (1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)`

`= 1/3* (1 - 1/103)`

`= 1/3*102/103`

`= 34/103`

b)

`-1/3 + (-1/15) + (-1/35) + (-1/63) + ... + (-1/9999)`

`= - 1/3 - 1/15 - 1/35 - 1/63 - ... - 1/9999`

`= - (1/3 + 1/15 + 1/35 + ... + 1/9999)`

`= - (1/(1*3) + 1/(3*5) + 1/(5*7) + ... + 1/99*101)`

`= - 1/2 * (2/(1*3) + 2/(3*5) + 2/(5*7) + ... + 2/99*101)`

`= - 1/2* (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)`

`= -1/2 * (1 - 1/101)`

`= -1/2*100/101`

`= -50/101`

2.

`3/(1*4) + 3/(4*7) + ... + 3/(94*97) + 3/(97*100)`

`= 1 - 1/4 + 1/4 - 1/7 + ... + 1/94 - 1/97 + 1/97 - 1/100`

`= 1-1/100`

`= 99/100`

Bình luận (0)