CMR
\(\frac{1}{2x2}+\frac{1}{3x3}+\frac{1}{4x4}+...+\frac{1}{2017x2017}< \frac{3}{4}\)
Cho A :\(\frac{1}{2x2}+\frac{1}{3x3}+\frac{1}{4x4}+...........+\frac{1}{2011x2011}\)
a, So sánh A với 1
b, So sánh A với \(\frac{3}{4}\)
a, \(A=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{2011\cdot2011}\)
có :
\(\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
\(\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)
...
\(\frac{1}{2011\cdot2011}< \frac{1}{2010\cdot2011}\)
nên :
\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2010\cdot2011}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(\Rightarrow A< 1-\frac{1}{2011}\)
\(\Rightarrow A< \frac{2010}{2011}< 1\)
b, \(A=\frac{2010}{2011}=1-\frac{1}{2011}\)
\(\frac{3}{4}=1-\frac{1}{4}\)
\(\frac{1}{4}>\frac{1}{2011}\)
nên :
\(A>\frac{3}{4}\)
a, A bé hơn 1
b, A bé hơn 3/4
Chứng tỏ rằng
B=\(\frac{1}{2x2}+\frac{1}{3x3}+\frac{1}{4x4}+\frac{1}{5x5}+\frac{1}{6x6}+\frac{1}{7x7}+\frac{1}{8x8}< 1\)
Ta thấy:
1/2*2<1/1*2)vì 2*2>1*2).
1/3*3<1/2*3(vì 3*3>2*3).
...
1/8*8<1/7*8(vì 8*8>7*8).
=>1/2*2+1/3*3+1/4*4+...+1/8*8<1/1*2+1/2*3+1/3*4+...+1/7*8.
=>B<1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8.
=>B<1-1/8.
=>B<7/8.
Mà 7/8<1.
=>B<1.
Vậy B<1(đpcm).
\(< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)
\(\Rightarrow1-\frac{1}{8}< 1\)
=>B<1
\(B=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6.}+\frac{1}{7.7}+\frac{1}{8.8}\)\(=\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}\)
\(B=1-\frac{1}{8}\)
\(\Rightarrow B< 1\left(ĐPCM\right)\)
Chứng minh:
\(\frac{1}{2x2}+\frac{1}{3x3}+\frac{1}{4x4}+.....+\frac{1}{10x10}\)\(< 1\)
\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+....+\frac{1}{10\cdot10}\)
Ta có :
\(\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
\(\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)
.....................................
\(\frac{1}{10\cdot10}< \frac{1}{9\cdot10}\)
Ta có :
\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)
\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{1}{1}-\frac{1}{10}\)
\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{9}{10}\)
\(\Rightarrow\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{9}{10}< 1\)
Đặt \(B=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{10.10}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow B< 1-\frac{1}{10}< 1\)
\(\Rightarrow B< 1\left(đpcm\right)\)
\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}\)
\(\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
\(...\)
\(\frac{1}{10\cdot10}< \frac{1}{9\cdot10}\)
Cộng vế theo vế
\(\Rightarrow\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)
\(\Rightarrow\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< 1-\frac{1}{10}\)
Lại có \(1-\frac{1}{10}< 1\)
\(\Rightarrow\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< 1-\frac{1}{10}< 1\)
\(\Rightarrow\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< 1\)( đpcm )
Câu 1: Cho A = \(\frac{1}{2x2}\)+ \(\frac{1}{3x3}\)+\(\frac{1}{4x4}\)+...+\(\frac{1}{2021x2021}\)
a. So sánh A với 1
b. So sánh A với 3\(\frac{3}{4}\)
Cho A= \(\frac{1}{2x2}\)+ \(\frac{1}{3x3}\)+\(\frac{1}{4x4}\)+...+\(\frac{1}{2014x2014}\)
a)So sánh A với 1.
b)So sánh A với \(\frac{3}{4}\)
\(Giải\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}\)\(+\frac{1}{4}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2014}\)
\(A=0+0+0+...+0+0\)
\(\Rightarrow A=0\)
\(a.\)\(A< 1\)
b. \(A< \frac{3}{4}\)
Chứng minh S < 2
S = \(\frac{1}{1x1}+\frac{1}{2x2}+\frac{1}{3x3}+\frac{1}{4x4}+...+\frac{1}{10x10}\)
lm được 5 tích
Ta có: \(S=1+\frac{1}{2x2}+\frac{1}{3x3}+.....+\frac{1}{10x10}\)
Ta có: 1/2x2 < 1/1x2
1/3x3 < 1/2x3
1/4x4 < 1/3x4
.......................
1/10x10 < 1/9x10
=> S< 1+1/1x2+1/2x3+1/3x4+.....+1/9x10
=> S<1+(1-1/10)
=> S < 1+9/10
=> S < 19/10 < 2
Vậy S<2
1/5x5;1/6x6;1/7x7;1/8x8;1/9x9
đặt \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(B=1-\frac{1}{10}<1\) (1)
Mà 1<2 (2)
Ta có:\(S=\frac{1}{1.1}+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{10.10}(3)
so sánh:
a)\(\frac{201,7x2018+1}{201,8x2019+1}và\frac{201,6x2017+1}{201,7x2018+1}\) b)\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{14}và\frac{3}{2}\)
c)\(\frac{1}{2x2}+\frac{1}{3x3}+\frac{1}{4x4}+...+\frac{1}{2018x2018}và1\)
ta co
1/2.2<1/1*2
...
1/2018*2018<1/2017*2018
=>1/2*2+...+1/2018*1018<1/1*2+...+1/2017.2018
.....(tinh 1/1*2+...+1/2017.*2018)
=>1/2*2+...+1/2018*2018<1-1/2018<1
=>1/2*2+...+1/2018*2018<1
so sánh\(\frac{1}{2x2}\)+ \(\frac{1}{3x3}\)+\(\frac{1}{4x4}\)+ .....+\(\frac{1}{2015x2015}\)với \(\frac{3}{4}\)mà không dùng máy tính
ai có cả cách giải mình cho 3 kick nhé
mình cần gấp
\(A>\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)
\(A>\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2015-2014}{2014.2015}\)
\(A>1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(A>1-\frac{1}{2015}\)
Mà \(\frac{1}{2015}< \frac{1}{4}\Rightarrow1-\frac{1}{2015}>1-\frac{1}{4}=\frac{3}{4}\Rightarrow A>\frac{3}{4}\)
1. so sanh a với b biet
\(a=\frac{1x2}{2x2}x\frac{2x3}{3x3}x\frac{3x4}{4x4}x\frac{4x5}{5x5}x....x\frac{2012x2013}{2013x2013}\)
\(b=\frac{2012x2013-2012x2012}{2012x2011+2012x2}\)
1.
\(A=\frac{1.2}{2.2}.\frac{2.3}{3.3}.\frac{3.4}{4.4}......\frac{2012.2013}{2013.2013}\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.........\frac{2012}{2013}\)
\(A=\frac{1.2.3.4.....2012}{2.3.4.5......2013}\)
\(A=\frac{1}{2013}\)
\(B=\frac{2012.2013-2012.2012}{2012.2011+2012.2}\)
\(B=\frac{2012\left(2013-2012\right)}{2012\left(2011+2\right)}\)
\(B=\frac{2013-2012}{2011+2}\)
\(B=\frac{1}{2013}\)
\(Vì:\frac{ 1}{2013}=\frac{1}{2013}\)
\(\Rightarrow\frac{1.2}{2.2}.\frac{2.3}{3.3}.\frac{3.4}{4.4}......\frac{2012.2013}{2013.2013}=\frac{2012.2013-2012.2012}{2012.2011+2012.2}\)
\(Hay: A=B\)
\(A=\frac{1\times2}{2\times2}\times\frac{2\times3}{3\times3}\times\frac{3\times4}{4\times4}\times\frac{4\times5}{5\times5}\times...\times\frac{2012\times2013}{2013\times2013}\)
\(\Rightarrow A=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\times...\times\frac{2012}{2013}\)
\(\Rightarrow A=\frac{1\times2\times3\times4\times...\times2012}{2\times3\times4\times5\times...\times2013}\)
\(\Rightarrow A=\frac{1}{2013}\)
\(B=\frac{2012\times2013-2012\times2012}{2012\times2011+2012\times2}\)
\(\Rightarrow B=\frac{2012\times\left(2013-2012\right)}{2012\times\left(2011+2\right)}\)
\(\Rightarrow B=\frac{2012\times1}{2012\times2013}\)
\(\Rightarrow B=\frac{1}{2013}\)