( 3 x X - 18 ) x ( X - 9 ) = 0
Câu 15: Tìm x thuộc bội của 9 và x < 63
A. x ∈ {0; 9; 18; 27; 36; 45; 54} B. x ∈ {0; 9; 18; 28; 35}
C. x ∈ {9; 18; 27; 36; 45; 54; 63} D. x ∈ {9; 18; 27; 36; 45; 55; 63}
tìm x thuộc Z:
a, -154+(x-9-18)=40
b,/9-x/=64+(-7)
c, -(-x+13.142)+18=55
d,(x-7).(x+1)=0
e,(x-7).(x+1)>0
f, (x-3).(x^2+5)=0
a, -154+(x-9-18)=40
x-27=40-(-154)
x-27=194
x=194+27
x=221
b,\(\left|9-x\right|\)=64+(-7)
\(\left|9-x\right|\)=57
TH1:
9-x=57
x=9-57
x=-48
TH2:
9-x=-57
x=9-(-57)
x=66
a, -154+(x-9-18)=40
x-27=40-(-154)
x-27=194
x=194+27
x=221
b,|9−x||9−x|=64+(-7)
|9−x||9−x|=57
TH1:
9-x=57
x=9-57
x=-48
TH2:
9-x=-57
x=9-(-57)
x=66
Tìm x
x^2 - 4x = 0
4x^2 - 9 = 0
2x ( x - 3 ) + 5( x - 3 ) = 0
x ( 2x + 9 )- 4x - 18
( 2x - 1 )^2 - ( x + 2 )^2 = 0
a) \(x^2-4x=0\)
\(x\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)
b) \(4x^2-9=0\)
\(\left(2x\right)^2-3^2=0\)
\(\left(2x+3\right)\left(2x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+3=0\\2x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{3}{2}\end{cases}}}\)
c) \(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\left(x-3\right)\left(2x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\2x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{2}\end{cases}}}\)
d) \(x\left(2x+9\right)-4x-18=0\)
\(x\left(2x+9\right)-2\left(2x+9\right)=0\)
\(\left(2x+9\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+9=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-9}{2}\\x=2\end{cases}}}\)
e) \(\left(2x-1\right)^2-\left(x+2\right)^2=0\)
\(\left(2x-1-x-2\right)\left(2x-1+x+2\right)=0\)
\(\left(x-3\right)\left(3x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\3x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-1}{3}\end{cases}}}\)
\(x^2-4x=0\)
\(x.\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-4=0\Leftrightarrow x=4\end{cases}}\)
\(4x^2-9=0\)
\(2^2x^2-9=0\)
\(\left(2x\right)^2-9=0\)
\(\left(2x\right)^2-3^2=0\)
\(\Rightarrow\orbr{\begin{cases}\left(2x\right)^2=\left(-3\right)^2\\\left(2x\right)^2=3^2\end{cases}\Rightarrow\orbr{\begin{cases}2x=-3\\2x=3\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{3}{2}\end{cases}}}}\)
\(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\left(x-3\right)\cdot\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-3\right)=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0+3\\2x=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{2}\end{cases}}}\)
\(x\left(2x+9\right)-4x-18=0\)
\(x\left(2x+9\right)-\left(4x+18\right)=0\)
\(x\left(2x+9\right)-\left(2\cdot2x+2\cdot9\right)=0\)
\(x\left(2x+9\right)-2.\left(2x+9\right)=0\)
\(\left(2x+9\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}2x+9=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-9\\x=0+2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-9}{2}\\x=2\end{cases}}}\)
\(\left(2x-1\right)^2-\left(x+2\right)^2=0\)
\(\Rightarrow\left(2x-1\right)^2=\left(x+2\right)^2\)
\(\Rightarrow\orbr{\begin{cases}2x-1=x+2\\2x-1=-x+2\end{cases}\Rightarrow\orbr{\begin{cases}2x=3+x\\2x=-x+3\end{cases}\Rightarrow\orbr{\begin{cases}2x-x=3\\2x+x=3\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}}}\)
\(\)
Câu 3: (1 diểm) Tìm x:
a) (x + 3)^2 - x(x - 4) = 39
b) x(x - 9) + 2x -18 = 0
a)=> x2 + 6x + 9 - x2 + 4x = 39 => 10x = 30 => x = 3
b) => x(x - 9) + 2(x -9) = 0 => (x+2)(x-9) = 0
+)th1: x + 2 = 0 => x = -2
+)th2: x - 9 =0 => x = 9
Tìm x:
a, -4/9 - 5/9 : x = 1/18
b, |x| = 1/2
c, x. ( x - 1/3 ) = 0
d, ( x - 2 ).( x + 3 ) < 0
e, ( x - 2 ).( x + 3 ) > 0
\(a)\dfrac{-4}{9}-\dfrac{5}{9}:x=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{5}{9}:x=\dfrac{-8}{18}+\dfrac{-1}{18}\)
\(\Leftrightarrow\dfrac{5}{9}:x=\dfrac{-1}{2}\)
\(\Leftrightarrow x=\dfrac{5}{9}.\left(-2\right)\)
\(\Leftrightarrow x=\dfrac{-10}{9}\)
\(b)\left|x\right|=\dfrac{1}{2}\)
\(\Leftrightarrow x\in\left\{-\dfrac{1}{2};\dfrac{1}{2}\right\}\)
\(c)x\left(x-\dfrac{1}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow x\in\left\{0;\dfrac{1}{3}\right\}\)
a) x=\(\dfrac{-10}{9}\)
b)x∈{\(\dfrac{1}{2}\); \(\dfrac{-1}{2}\)}
tìm x thuộc c biết
1) 7-(18+x)= - 15
2) (x-17)-(-3)=0
3) -18-(x-6)=0
4) 29-(10+29)=x-(27-9)
1,7-(18+x)=-15
<=>18+x=7+15
<=>18+x=22
<=>x=4
2,(x-17)-(-3)=0
<=>x-17+3=0
<=>x-17=-3
,<=>x=14
<=>
1,
7 - ( 18 + x ) = - 15
18 + x = 7 + 15
18 + x = 22
x = 22 - 18
x = 4
2,
( x - 17 ) - ( - 3 ) = 0
( x - 17 ) + 3 = 0
x - 17 = - 3
x = -3 + 17
x = 14
3, -18 - ( x - 6 ) = 0
-18 = x- 6
x = - 18 + 6
x = - 12
4, 29 - ( 10 + 29 ) = x - ( 27 - 9 )
-10 = x - 18
x = - 10 + 18
x = 8
( 3.x – 18).( x – 9) = 0
( 3.x – 18).( x – 9) = 0
=> 3x - 18 = 0 hoặc x - 9 = 0
3x = 0 + 18 x = 0 + 9
3x = 18 x = 9
x = 18 : 3
x = 6
Vậy x = 9 hoặc x = 6
Nếu a . b = 0 thì a hoặc b hoặc cả a và b phải là 0.
=> (3.x - 18) . (x - 9) = 0
Ta có:
* Nếu 3.x - 18 = 0 thì 3.x = 0 + 18 => 3.x = 18 => x = 18 : 3 => x = 6
* Nếu x - 9 = 0 thì x = 9
Vì cả 2 trường hợp trên x đều khác nhau nên không có trường hợp 3.x - 18 và x - 9 đều bằng 0.
( 3.x - 18 ) . ( x - 9 ) = 0
( 3.x -18 ) . x = 0 + 9
( 3.x - 18 ) . x = 9
4.x - 18 = 9
4.x = 9 + 18
4.x = 27
x = 27 : 4
x = 6,75
vậy x = 6,75
chúc bạn học tốt
(3.x-18).(x-9)=0
\(\left(3x-18\right)\left(x-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-18=0\\x-9=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=18\\x=9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=6\\x=9\end{cases}}\)
( 3.x-18).(9-x)=0
( 3x - 18) . (9 - x) = 0
\(\Rightarrow\hept{\begin{cases}3x-18=0\\9-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\end{cases}}}\)
( 3.x-18).(9-x)=0
<=>3x-18=0 hoặc 9-x=0
TH1: 3x-18=0
<=>3x=18
<=>x=6
Th2 :x-9=0
<=>x=9
vậy x=6 hoặc x=9
k mk nha mk mk bị âm điểm rùi
Ta có: ( 3.x - 18) . (9 - x) = 0
\(\Leftrightarrow\orbr{\begin{cases}3x-18=0\\9-x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0+18\\x=9-0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=18\\x=9\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=9\end{cases}}\)