Những câu hỏi liên quan
BN
Xem chi tiết
NL
Xem chi tiết
DH
5 tháng 12 2021 lúc 17:11

\(9x^2+5y^2-6xy-6x-6y+20\)

\(=9x^2+y^2+1-6x+2y-6xy+4y^2-8y+4+15\)

\(=\left(3x-y-1\right)^2+4\left(y-1\right)^2+15\ge15\)

Dấu \(=\)khi \(\hept{\begin{cases}3x-y-1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{2}{3}\\y=1\end{cases}}\).

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
NK
Xem chi tiết
CN
Xem chi tiết
YN
13 tháng 12 2021 lúc 19:22

Answer:

\(B=-5x^2-5y^2+8x-6y-1\)

\(\Rightarrow B=\left(-5x^2+8x-\frac{16}{5}\right)+\left(-5y^2-6y-\frac{9}{5}\right)+4\)

\(\Rightarrow B=-5\left(x-\frac{4}{5}\right)^2-5\left(y+\frac{3}{5}\right)^2+4\)

Có:

\(\hept{\begin{cases}\left(x-\frac{4}{5}\right)^2\ge0\forall x\Rightarrow-5\left(x-\frac{4}{5}\right)^2\le0\\\left(y+\frac{3}{5}\right)^2\ge0\forall y\Rightarrow-5\left(y+\frac{3}{5}\right)^2\le0\end{cases}}\)

Do vậy:

\(-5\left(x-\frac{4}{5}\right)^2-5\left(y+\frac{3}{5}\right)^2+4\le4\forall x;y\) hay \(B\le4\)

Vậy "=" xảy ra khi:

\(\hept{\begin{cases}x-\frac{4}{5}=0\\y+\frac{3}{5}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{5}\end{cases}}\)

Vậy giá trị lớn nhất của biểu thức \(B=4\) khi \(\hept{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{5}\end{cases}}\)

\(C=-5x^2-2xy-2y^2+14x+10y-1\)

\(\Rightarrow5C=\left(-25x^2-10xy-y^2+70x+14y-49\right)+\left(-9y^2+36y-36\right)+80\)

\(\Rightarrow5C=-\left(5x+y-7\right)^2-9\left(y-2\right)^2+80\)

\(\Rightarrow C=-\frac{1}{5}\left(5x+y-7\right)^2-\frac{9}{2}\left(y-2\right)^2+16\)

Có:

\(\hept{\begin{cases}\left(5x+y-7\right)^2\ge0\forall x;y\Rightarrow-\frac{1}{5}\left(5x+y-7\right)^2\le0\\\left(y-2\right)^2\ge0\forall y\Rightarrow-\frac{9}{5}\left(y-2\right)^2\le0\end{cases}}\)

Do vậy:

\(-\frac{1}{5}\left(5x+y-7\right)^2-\frac{9}{5}\left(y-2\right)^2+16\le16\) hay \(C\le16\)

Dấu "=" xảy ra khi: 

\(\hept{\begin{cases}5x+y-7=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy giá trị lớn nhất của biểu thức \(C=16\) khi \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
NS
Xem chi tiết
NH
7 tháng 12 2015 lúc 20:04

a) A = x2 - 6x + 13 = x2 - 2.x.3 + 3+4 = (x-3)2 + 4 >= 4 suy ra minA=4 
mấy câu kia giải tương tự

Bình luận (0)
NL
Xem chi tiết
TH
12 tháng 7 2016 lúc 20:47
B= \(\frac{7}{4}\)

C= \(\frac{1}{2}\)

Bình luận (1)
NM
Xem chi tiết
LN
Xem chi tiết
AH
30 tháng 4 2023 lúc 11:52

Lời giải:
$A=(9x^2-6xy+y^2)+5y^2-6x-6y+20$

$=(3x-y)^2-2(3x-y)+4y^2-8y+20$

$=(3x-y)^2-2(3x-y)+1+(4y^2-8y+4)+15$

$=(3x-y-1)^2+(2y-2)^2+15\geq 15$

Vậy $A_{\min}=15$.

Giá trị này đạt tại $3x-y-1=2y-2=0$

$\Leftrightarrow (x,y)=(\frac{2}{3},1)$

Bình luận (0)