Cho m là số tự nhiên lẻ. CMR : \(m^{2^n}\)- 1 chia hết cho \(2^{n+2}\)
Cho m,n là 2 số nguyên dương lẻ tm m^2+2 chia hết cho n và n^2+2 chia hết cho m
Cmr m^2+n^2+2 chia hết cho 4mn
Bài này dễ mà bn
Ta có: \(\hept{\begin{cases}m^2+2⋮n\\n^2+2⋮m\end{cases}}\Rightarrow\left(m^2+2\right)\left(n^2+2\right)⋮mn\Rightarrow m^2n^2+2\left(m^2+n^2+2\right)⋮mn\)
Dễ có \(m^2n^2⋮mn\)nên \(2\left(m^2+n^2+2\right)⋮mn\)
Mà m,n lẻ nên mn lẻ hay \(\left(mn,2\right)=1\)suy ra \(m^2+n^2+2⋮mn\)(*)
Ta có đánh giá rằng số chính phương lẻ thì chia 4 dư 1 (Thật vậy xét các trường hợp 4k + 1 và 4k + 3)
\(\Rightarrow\)m2, n2 chia 4 dư 1 \(\Rightarrow m^2+n^2+2⋮4\)(**)
Từ (*) và (**) suy ra \(m^2+n^2+2⋮4mn\)(Do \(\left(mn,4\right)=1\))
bài 1 :
cho a= n^2+n+1
a, cmr a là số tự nhiên lẻ với mọi số tự nhiên n
b, cmr a ko chia hết cho 5 với mọi số tự nhiên n
a)Nếu n là số lẻ thì n^2 là số lẻ,n^2+n là số lẻ,n^2+n+1 là số chẵn
Nếu n là số chẵn thì n^2 là số chẵn,n^2+n là số chẵn,n^2+n+1 là số lẻ(đề ghi sai)
a, Nếu n là số lẻ thì \(n^2\) lẻ suy ra \(n^2+n\) chẵn (lẻ cộng lẻ ra chẵn nha bạn)
suy ra \(n^2+n+1\) lẻ
Nếu n là số chẵn thì \(n^2\) chẵn suy ra \(n^2+n\) chẵn (chẵn cộng chẵn vẫn ra chẵn nha bạn)
suy ra \(n^2+n+1\) lẻ
câu b thì mk không chắc chắn với cách của mk lắm nhưng bạn cứ tham khảo thử nha!
Xét 2 trường hợp
Xét \(n⋮5\)(n chia hết cho 5) suy ra \(n^2\)chia hết cho 5 mà 1 không chia hết cho 5 nên a không chia hết cho 5
Xét n không chia hết cho 5 suy ra \(n^2\)không chia hết cho 5 mà 1 không chia hết cho 5 nên a không chia hết cho 5
Vậy a không chia hết cho 5 với mọi số tự nhiên n
Bài 1 : CMR n^5 -n chia hết cho 30
Bài 2 CMR với m là số nguyên lẻ ta có A = m^3+3m^2 -m-3 chia hết cho 48
tick cho mình đi đã rồi mình bày cho nếu khôn thì đừng mơ nhé
1 Cho số tự nhiên n với n > 2. Biết 2n - 1 là 1 số nguyên tố. Chứng tỏ rằng số 2n + 1 là hợp số
2 Cho 3 số: p, p+2014.k, p+2014.k là các số nguyên tố lớn hơn 3 vá p chia cho 3 dư 1. Chứng minh rằng k chia hết cho 6
3 Cho 2 số tự nhiên a và b, trong đó a là số lẻ. Chứng minh rằng 2 số a và a.b+22013là 2 số nguyên tố cùng nhau
4 Cho m và n là các số tự nhiên, m là số lẻ. Chứng tỏ rằng m và mn+8 là 2 số nguyên tố cùng nhau
5 Cho A=32011-32010+...+33-32+3-1. Chứng minh rằng a=(32012-1) : 4
6 Cho số abc chia hết cho 37. Chứng minh rằng số bca chia hết cho 37
cho m là số tự nhiên lẻ , n là số tự nhiên , CMR m và m .n cộng 4 là 2 số nguyên tố cùng nhau
TK :
gọi d là UC(m; m.n+4) nên
m⋮d ⇒ m.n⋮d
m.n⇒4⋮d
⇒m.n + 4 - m.n = 4⋮d⇒d = {1;2;4}
Do m lẻ => d lẻ => d=1 => m và m.n+4 nguyên tố cùng nhau
cmr m.n(m+n) chia hết cho 2 ( với m,n là các số tự nhiên)
Nếu \(m,n\)cùng tính chẵn lẻ thì \(m+n⋮2\Rightarrow mn\left(m+n\right)⋮2\)
Nếu trong \(m,n\)có một số chẵn, một số lẻ (giả sử \(m\)chẵn) thì \(mn⋮2\)\(\Rightarrow mn\left(m+n\right)⋮2\)
Vậy \(mn\left(m+n\right)⋮2\forall m,n\inℕ\)
Cmr: với m là số tự nhiên lẻ ta luôn có m^(2n)-1 chia het 2^(n+2)
Cho n là một số tự nhiên lẻ. C/m rằng \(n^6-n^4-n^2+1\) chia hết cho 128.
\(M=n^6-n^4-n^2+1=n^4\left(n^2-1\right)-\left(n^2-1\right)=\left(n^2-1\right)\left(n^4-1\right)=\left(n^2-1\right)^2\left(n^2+1\right)=\)
\(=\left(n-1\right)^2\left(n+1\right)^2\left(n^2+1\right)\) Theo giae thiết n = 2t + 1 (Là số tự nhiên lẻ) với t là số tự nhiên. Do đó:
\(M=\left(2t+1-1\right)^2\left(2t+1+1\right)^2.[\left(2t+1\right)^2+1]=4t^2.4\left(t+1\right)^2.[4t^2+4t+2].\)
\(M=32.[t\left(t+1\right)]^2.[2t^2+2t+1]\) Ta có t(t + 1) là số chẵn (Là tích hai số tự nhiên liên tiếp) bình phương của số đó chia hết cho 4 cho nên M chia hết cho 128 ( 128 = 32 x 4).
cho m n là số tự nhiên thỏa mãn m2-2020n2+2022 chia hết cho m,n chứng minh rằng m,n là hai số lẻ và nguyên tố cùng nhau
Giải (copy)
Nếu m,n là 2 số chẵn thì m2- 2023n2+ 2022 không chia hết cho 4 và mn chia hết cho 4 suy ra m2-2023n2+2022 không chia hết cho mn (loại)
nếu m,n khác tính chẵn lẻ thì m2- 2023n2+ 2022 lẻ và mn chẵn do đó m2-2023n2+2022 không chia hết cho mn (loại)
Vậy m,n là những số lẻ
Gọi (m,n) = d => m2- 2023n2 ⋮ d2 ; mn ⋮ d2 mà m2- 2023n2 + 2022 ⋮ mn nên 2022 ⋮ d2
Mặt khác 2022 = 2.3.337 tức 2022 không có ước chính phương nào ngoài 1 do đó d2 = 1 => d = 1 => (m,n) =1 vậy m,n là hai số nguyên tố cùng nhau .
Em chưa hiểu tai sao
Nếu m,n là 2 số chẵn thì m2- 2023n2+ 2022 không chia hết cho 4
thầy Cao Lộc phân tích cho em với ạ
Cặp \(m=2\) , \(n=1\) vẫn thỏa \(m^2-2020n^2+2022⋮mn\)
Để chứng minh rằng m và n là hai số lẻ và nguyên tố cùng nhau, ta cần thực hiện các bước sau đây:
Bước 1: Giả sử rằng m và n là hai số tự nhiên thỏa mãn m^2 - 2020n^2 + 2022 chia hết cho mn.
Bước 2: Ta sẽ chứng minh rằng m và n là hai số lẻ.
Giả sử rằng m là số chẵn, tức là m = 2k với k là một số tự nhiên. Thay thế vào biểu thức ban đầu, ta có:
(2k)^2 - 2020n^2 + 2022 chia hết cho 2kn
Simplifying the equation, we get:
4k^2 - 2020n^2 + 2022 chia hết cho 2kn
Dividing both sides by 2, we have:
2k^2 - 1010n^2 + 1011 chia hết cho kn
Do 2k^2 chia hết cho kn, vì vậy 2k^2 cũng chia hết cho kn. Từ đó, 1011 chia hết cho kn.
Bởi vì 1011 là một số lẻ, để 1011 chia hết cho kn, thì kn cũng phải là một số lẻ. Vì vậy, n cũng phải là số lẻ.
Do đó, giả sử m là số chẵn là không hợp lệ. Vậy m phải là số lẻ.
Bước 3: Chứng minh rằng m và n là hai số nguyên tố cùng nhau.
Giả sử rằng m và n không phải là hai số nguyên tố cùng nhau. Điều đó có nghĩa là tồn tại một số nguyên tố p chia hết cả m và n.
Vì m là số lẻ, n là số lẻ và p là số nguyên tố chia hết cả m và n, vì vậy p không thể chia hết cho 2.
Ta biểu diễn m^2 - 2020n^2 + 2022 dưới dạng phân tích nhân tử:
m^2 - 2020n^2 + 2022 = (m - n√2020)(m + n√2020)
Vì p chia hết cả m và n, p cũng phải chia hết cho (m - n√2020) và (m + n√2020).
Tuy nhiên, ta thấy rằng (m - n√2020) và (m + n√2020) không thể cùng chia hết cho số nguyên tố p, vì chúng có dạng khác nhau (một dạng có căn bậc hai và một dạng không có căn bậc hai).
Điều này dẫn đến mâu thuẫn, do đó giả sử ban đầu là sai.
Vậy ta có kết luận rằng m và n là hai số tự nhiên lẻ và nguyên tố cùng nhau.