(x-3)(x+5)+20>4 hoặc =4, dấu = xảy ra khi nào
(x-3).(x+5)+20>4 hoặc =4, dấu = xảy ra khi nào
\(\left(x-3\right)\left(x+5\right)+20=x^2+2x-15+20=x^2+2x+5=\left(x+1\right)^2+4\)
Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+4\ge4\Rightarrow\left(x-3\right)\left(x+5\right)+20\ge4\)
Dấu "=" xảy ra khi (x+1)2=0 =>x+1=0=>x=-1
Chứng minh (x-3).(x+5)+20>4 hoặc =4 , dấu = xảy ra khi nào?
A) Cho a>0 , b>0. Cmr : a+b >=2√ab . Dấu = xảy ra khi nào?
B) Cho biết x>2 , cmr : x + 4/x - 2 >= 6 . Dấu = xảy ra khi nào?
C) Cho a, b>0 , chứng minh (a+b) (1/a + 1/b) >= 4. Dấu = xảy ra khi nào?
c) Áp dụng BĐT cô si cho 2 hai số dương \(a;b\) ta có:
\(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{\sqrt{ab}}\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu "=" xảy ra khi \(\Leftrightarrow a=b\)
Dấu = xảy ra khi nào
\(\left(x-3\right)\left(x+5\right)+20\ge4\)
\(\left(x-3\right)\left(x+5\right)+20\ge4\)
<=> \(x^2+2x-15+20\ge4\)
<=> \(\left(x^2+2x+1\right)+4\ge4\)
<=> \(\left(x+1\right)^2+4\ge4\) luôn đúng
Dấu "=" xảy ra <=> \(x=-1\)
Ta có:
\((x-3)(x+5)+20\geq4\)
\(\Leftrightarrow (x-3)(x+5)\geq-16\)
\(\Leftrightarrow (x-3)x+(x-3)5\geq-16\)
\(\Leftrightarrow x^2-3x+5x-15\geq-16\)
\(\Leftrightarrow x^2+2x-15\geq-16\)
\(\Leftrightarrow x^2-2x\geq-16+15\)
\(\Leftrightarrow x^2-2x\geq-1\)
\(\Leftrightarrow x(x-2)\geq-1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x(x-2)=-1\)
Mà \(x>x-2\)
\(\Rightarrow\)\(x=1;x-2=-1\)
Chứng tỏ rằng:
(x-3)(x+5)+20 lớn hơn hoặc bằng 4 , Dấu "=" xảy ra khi nào?
Dùng hằng đẳng thức để tính nhanh:
a4mb4m-(ambm+1)(a2mb2m+1)(ambm-1) (m thuộc N*)
ta có (x-3)(x+5)+ 20
= x^2 +2x - 15 +20
= x^2 + 2x +1 - 16 + 20
= (x+1)^2 - 4
vì \(\left(x+1\right)^2\ge0\)với mọi x
\(\left(x+1\right)^2-4\ge-4\) (cộng cả hai vế với -4)
\(4-\left(x+1\right)^2\le4\) ( nhân cả hai vế với -1 )
Giả sử (x-3)(x+5)+20 lớn hơn hoặc bằng 4 với mọi x thuộc R
<=>(x-3)(x+5)+20-4 lớn hơn hoặc bằng 0
<=>X2+2x-15+20-4 lớn hơn hoặc bằng o
<=>x2+2x+1 lớn hơn hoặc bằng 0
<=>(x+1)2 lớn hơn hoặc bằng 0 ( luôn đúng )
Vậy (x-3)(x+5)+20 lớn hơn hoặc bằng 4
(x-3)(x+5)+20 lớn hơn hoặc bằng 4
<=>( x+1)2 =0
Dấu "=" xảy ra khi và chỉ khi x+1=0
<=>x=0-1=-1
a4mb4m-(ambm+1)(a2m b2m+1)(ambm-1)
=a4mb4m-(ambm+1)(ambm-1)(a2mb2m+1)
=a4mb4m-(a2mb2m-1)(a2mb2m+1)
=a4mb4m-a4mb4m +1
=1
Cmr: /x-1/+/x-3/+/x+9/ > hoặc =10. Dấu = xảy ra khi nào
Mk đg cần gấp. TKS MN
Dấu bằng xảy ra khi nào trong BĐT sau:
\(x^4+4\ge2\sqrt{x^4+4}+2\sqrt{x^4-4}\)
Giúp mình với!!!!!!!!!!!
Câu 20:
Max \(P=\sqrt{2x^2+5x+2}+2\sqrt{x+3}-2x=\sqrt{\left(2x+1\right)\left(x+2\right)}+\sqrt{4\left(x+3\right)}-2x\le\frac{2x+1+x+2}{2}+\frac{x+3+4}{2}-2x=5.\)
=>Max P=5
Dấu = xảy ra khi \(\hept{\begin{cases}2x+1=x+2\\x+3=4\end{cases}< =>x=1.}\)
Cho a, b, c>0 và a + b + c = 4. CMR: a + b lớn hơn hoặc bằng abc. Dấu "=" xảy ra khi nào?