Những câu hỏi liên quan
KV
Xem chi tiết
DM
25 tháng 10 2020 lúc 13:45

a) 2x = 3y =7z và x+y-z =58

\(\Rightarrow\frac{2x}{42}=\frac{3y}{42}=\frac{7z}{42}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}=\frac{x+y-z}{21+14-6}=\frac{58}{29}=2\)

\(\frac{x}{21}=2\Rightarrow x=21\cdot2=42\)

\(\frac{y}{14}=2\Rightarrow y=14\cdot2=28\)

\(\frac{z}{6}=2\Rightarrow z=6\cdot2=12\)

Bình luận (0)
 Khách vãng lai đã xóa
KV
Xem chi tiết
KV
Xem chi tiết
ND
Xem chi tiết
D0
16 tháng 7 2018 lúc 14:02

\(a,\) \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)

\(7x=5z\Rightarrow\frac{x}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{z}{14}\left(2\right)\)

Từ (1) và (2) ta có: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\) và \(x-y+z=32\)

Áp dụng t/c DTSBN ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{32}{9}\Rightarrow x=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}\Rightarrow y=\frac{160}{3}\\\frac{z}{14}=\frac{32}{9}\Rightarrow z=\frac{2560}{189}\end{cases}}\)

Vậy \(x=\frac{320}{9};y=\frac{160}{3};z=\frac{2560}{189}\)

các câu còn lại lm tương tự nhé

Bình luận (0)
ND
16 tháng 7 2018 lúc 14:04

uhm, tks bn

Bình luận (0)
NT
4 tháng 3 2020 lúc 21:10

\(a,3x=2y=>\frac{x}{2}=\frac{y}{3}=>\frac{x}{10}=\frac{y}{15}\)(1)

\(7x=5z=>\frac{x}{5}=\frac{z}{7}=>\frac{x}{10}=\frac{z}{14}\)(2)

Từ 1 và 2 \(=>\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\)

Áp dụng tc của dãy tỉ số bằng nhau :

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)

\(=>\hept{\begin{cases}\frac{x}{10}=\frac{32}{9}=>9x=320=>x=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}=>9y=480=>y=\frac{480}{9}\\\frac{z}{14}=\frac{32}{9}=>9z=448=>z=\frac{448}{9}\end{cases}}\)

Vậy ,,,

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
DL
29 tháng 10 2016 lúc 22:02

Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}->\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)

->\(\frac{2x^2}{8}=\frac{3y^2}{27}=\frac{5z^2}{80}\)  và 2x2+3y2-5x2=-405

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\frac{2x^2}{8}=\frac{3y^2}{27}=\frac{5z^2}{80}=\frac{2x^2+3y^2-5z^2}{8+27-80}=-\frac{405}{-45}=9\)

Do đó, *)x2/4=9 => x2=9*4=36

            => x=6 hoặc x=-6

           *)y2/9=9 => x2=9*9=81

            => y=9 hoặc y=-9

           *)z2/16=9 => z2=9*16=144

            => z=12 hoặc z=-12

Vậy x=6; y=9 ; z=12 hoặc x=-6;y=-9;z=-12

Bình luận (0)
SC
29 tháng 10 2016 lúc 21:54

chịu thui

chuc bn hoc tốt nha!

nhae$Demngayxaem

nhaE

hihi

____________________________

Bình luận (0)
NT
29 tháng 10 2016 lúc 21:58

x=6

y=9

z=12

Bình luận (0)
DD
Xem chi tiết
TT
31 tháng 10 2017 lúc 22:10

Bài toán :

Kết quả: Giải hệ phương trình

Bình luận (0)
DD
Xem chi tiết
ND
31 tháng 10 2017 lúc 18:00

\(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}\\ 4y=5z\Rightarrow\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{10}=\dfrac{z}{8}\\ \Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{8}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{8}=\dfrac{x+y-z}{15+10-8}=\dfrac{78}{17}\\ \Rightarrow x=\dfrac{78}{17}.15=...\\ y=\dfrac{78}{17}.10=\dfrac{780}{17}\\ z=\dfrac{78}{10}.8=...\)

Bình luận (1)
LN
Xem chi tiết
H24
16 tháng 1 2021 lúc 12:24

a)=>x(y+2)-(y+2)=3

=>(y+2)(x-1)=3

Vì x,y thuộc Z nên y+2 và x-1 thuộc Ư(3)={+1;+3;-1;-3}

Sau đó thay lần lượt các cặp -1 với -3 và 1 với 3

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết