Chứng minh rằng nếu a thuộc Z thì :N =(a-2)(a+3)-(a-3)(a+2) là số chẵn
Chứng minh rằng nếu a thuộc Z thì:
N=(a-2)(a+3)-(a-3)(a+2) số chẵn
Ta có:
N= a^2-2a+3a-6-a^2-2a+3a+6
= 2a
Vì 2a là số chẵn với mọi a thuộc Z
=>N là số chẵn với mọi a thuộc Z.
<=> N= a2 +3a -2a -6 -a2-2a+3a +6= 2a Vì 2a là số chẵn nên N là số chẵn
Chứng minh rằng nếu a thuộc Z thì
N= ( a-2)(a+3)-(a-3)(a+2) là số chẵn
Đặt VT = (a-2)(a+3)
VP = (a-3)(a+2)
Ta có:
Nếu a chia hết cho 2
< = > a - 2 chẵn
< = > VT chia hết cho 2
< = > a + 2 chẵn
< = > VP chia hết cho 2
< = > VT - VP chia hết cho 2 < = > N chia hết cho 2 <<1>>
Nếu a chia 2 dư 1
< = > a + 3 chẵn
< = > VT chia hết cho 2
< = > a - 3 chẵn
< = > VP chia hết cho 2
< = > VT - VP chia hết cho 2 < = > N chia hết cho 2 <<2>>
Từ <<1>> ; <<2>> => N chẵn
Chứng minh rằng nếu a thuộc Z thì:
a,M=a.(a+2)-a.(a-5) là bội của 7
b,N=(a-2).(a+3)-(a-3).(a+2) là số chẵn
chứng minh rằng nếu a thuộc Z thì
a. M=a.(a+2)-a.(a-5) Là bội của 7
b. N=(a-2).(a+3)-(a-3).(a+2) Là số chẵn
Chứng minh rằng nếu a thuộc Z thì:
N=(a-2).(a+3)-(a-3).(a+20) là số chẵn
Làm giúp mk bài này nha,mk đang cần gấp.Cảm ơn mn nhiều :3
sửa đề: N=(a-2)(a+3)-(a-3)(a+2)
=(a2+3a-2-6)-(a2+2a-3a-6)
=a2+a-6-a2+a+6=2a là số chẵn với mọi a thuộc Z
C1: nếu a chẳn thì (a-2) và (a+20) là số chẳn. Do đó (a-2)(a+3) và (a-3)(a+20) chẳn nên N chẳn.
nếu a lẻ thì (a+3) và (a-3) là số chẳn. Do đó (a-2)(a+3) và (a-3)(a+20) chẳn nên N chẳn.
C2:
vì a thuộc Z nên a có thể viết bằng: a = 2n hoặc a = 2n+1.
Nếu a = 2n thì N=(2n-2)(2n+3) - (2n-3)(2n+20) = 2*[(n-1)(2n+3) - (2n-3)(n+10)]. Do đó N là số chẳn.
Nếu a= 2n+1 thì N =(2n+1 -2)(2n+1+3) -(2n+1-3)(2n+1+20) = 2*[(2n-1)(n+1) - (n-1)(2n+21)]. Do đó N là số chẳn.
Kết luận: N chẳn với mọi a.(DPCM)
Xét 2 trường hợp:
+ Trường hợp 1: a là 1 số chẵn
=> a=2k \(\left(k\inℤ\right)\)
Ta có (a-2)(a+3)-(a-3)(a+20)= (2k-2)(2k+3)-(2k-3)(2k+20)= 2(k-1)(2k+3)-(2k-3).2(k+10)
= 2. [(k-1)(2k+3)-(2k-3)(k+10)] \(⋮2\)
=> (a-2)(a+3)-(a-3)(a+20) là 1 số chẵn.
+ Trường hợp 2: a là 1 số lẻ
=> a=2k+1 \(\left(k\inℤ\right)\)
Ta có (a-2)(a+3)-(a-3)(a+20)=(2k+1-2)(2k+1+3)-(2k+1-3)(2k+1+20)=(2k-1).2(k+2)-2(k-1)(2k+21)
= 2.[(2k-1)(k+2)-(k-1)(2k+21)] \(⋮2\)
=> (a-2)(a+3)-(a-3)(a+20) là 1 số chẵn.
Vậy nếu a\(\inℤ\)thì N=(a-2)(a+3)-(a-3)(a+20) là 1 số chẵn
Bạn tham khảo bài làm của mik nhé!!! k cho mik nha
chứng minh rằng nếu a thuộc Z thì
a. M=a.(a+2)-a.(a-5)-7 Là bội của 7
b. N=(a-2).(a+3)-(a-3).(a+20) Là số chẵn
M=a.(a+2)-a.(a-5)-7
M=a.[(a+2)-(a-5)]-7
M=a.7-7
ma M>7 hoac M=0
nên M là bội của 7
nếu a lẻ thì goi a la 2n+1
N=(2n+1-2).(2n+1+3)-(2n+1-3).(2n+1+20)
N=(2n-1).(2n+4)-(2n-2).(2n+21)
N=lẻ nhân chẵn trừ chẵn nhân lẻ
N= chẵn - chẵn = chẵn nên nếu a là số lẻ thì N chẵn
nếu a chẵn thì gọi a là 2n
N=(2n-2).(2n+3)-(2n-3).(2n+20)
N=chẵn nhân lẻ trừ lẻ nhân chẵn
N=chẵn trừ chẵn = chẵn
vậy N là số chẵn với mọi a
chứng minh rằng nếu a thuộc Z thì
a. M=a.(a+2)-a.(a-5)-7 Là bội của 7
b. N=(a-2).(a+3)-(a-3).(a+20) Là số chẵn
a. Ta có: M= a.(a+2)-a.(a-5)-7
=a.(a+2-a+5)-7
= 7.a-7=7.(a -1) chia hết cho 7.
Vậy M là bội của 7(đpcm)
vậy còn bài thứ 2 thì như thế nào ? giải luôn đi bạn
7 nha bn
chuc bn hoc tot
happy new year
chứng minh rằng nếu a thuộc Z thì
a. M=a.(a+2)-a.(a-5)-7 Là bội của 7
b. N=(a-2).(a+3)-(a-3).(a+20) Là số chẵn
Chứng minh rằng nếu A thuộc Z thì
a)A=a.(a+2)-a.(a-5)-7 là bội của 7
v)B=(a-2).(a+3)-(a-3).(a+2) là số chẵn
\(A=a^2+2a-a^2+5a-7=7a-7=7\left(a-1\right)⋮7\)
\(\left(a-2\right)\left(a+3\right)-\left(a-3\right)\left(a+2\right)=a^2+a-6-\left(a^2-a-6\right)=2a+12=2\left(a+6\right)⋮2\)
\(\text{Vậy: B là số chẵn; A chia hết cho 7}\)