4/ Chứng minh
a) a^3+b^3+c^3-a-b-c chia hết cho 6. Với a,b,c, số nguyên
2.Cho biểu thức P=(a+b+c).(a.b+b.b+a.c)-2.a.b (với a;b;c thuộc Z).Chứng minh nếu a+b+c chia hết cho 4 thì P chia hết cho 4
3. Cho 3 số nguyên a;b;c thỏa mãn a^2+b^2=c^2.Chứng minh :
Câu a:a.b.c chia hết cho 3
Câu b:a.b.c chia hết cho 12
4.Cho p là số nguyên tố >7.Chứng minh 3^p-2^p-1 chia hết cho 42.p
5.Chứng minh với mọi STN thì n^3-n+2 không chia hết cho 6
Bài 1: cho a,b,c là số nguyên tố lớn hơn 3. Chứng minh (a-b(b-c)(c-a) chia hết cho 48.
Bài 2: cho các số nguyên dương a,b,c sao cho (a-b)(b-c)(c-a)=a+b+c. Chứng minh a+b+c chia hết cho 27.
Bài 3: Chứng minh rằng với mọi số nguyên tố lớn hơn p>3 thì 2018-2p^4 chia hết cho 96.
1)
+) a, b, c là các số nguyên tố lớn hơn 3
=> a, b, c sẽ có dạng 3k+1 hoặc 3k+2
=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 3
=> (a-b)(b-c)(c-a) chia hết cho 3 (1)
+) a,b,c là các số nguyên tố lớn hơn 3
=> a, b, c là các số lẻ và không chia hết cho 4
=> a,b, c sẽ có dang: 4k+1; 4k+3
=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 4
th1: Cả 3 số chia hết cho 4
=> (a-b)(b-c)(c-a) chia hết cho 64 (2)
Từ (1); (2) => (a-b)(b-c)(c-a) chia hết cho 64.3=192 vì (64;3)=1
=> (a-b)(b-c)(c-a) chia hết cho 48
th2: Có 2 số chia hết cho 4, Số còn lại chia hết cho 2
=> (a-b)(b-c)(c-a) chia hết cho 32 (3)
Từ (1) , (3)
=> (a-b)(b-c)(c-a) chia hết cho 32.3=96 ( vì (3;32)=1)
=> (a-b)(b-c)(c-a) chia hết cho 48
Th3: chỉ có một số chia hết cho 4, hai số còn lại chia hết cho 2
=> (a-b)(b-c)(c-a) chia hết cho 16
Vì (16; 3)=1
=> (a-b)(b-c)(c-a) chia hết cho 16.3=48
Như vậy với a,b,c là số nguyên tố lớn hơn 3
thì (a-b)(b-c)(c-a) chia hết cho 48
Cho 4 số nguyên a,b,c,d thỏa mãn a^3+b^3+c^3+7d^3 chia hết cho 6 .Chứng minh rằng A+B+C+D cũng chia hết cho 6
Cho các số nguyên a ,b , c và a+b+c chia hết cho 4. Chứng minh 3 x a x b x c chia hết cho 6
Cho các số nguyên a,b,c và a+b+c chia hết cho 4.Chứng minh 3.a.b.c chia hết cho 6
a+b+c chia hết cho 4 vậy suy ra có ít nhất 1 số chẵn
Vậy a.b.c chia hết cho 2.
3.a.b.c chia hết cho 3
Vậy 3.a.b.c chia hết cho 6
Cho các số nguyên tố a ,b,c và a+b+c chia hết cho 4 . chứng minh 3.a.b.c chia hết cho 6 ?
Cho các số nguyên a,b,c và a+b+c chia hết cho 4. Chứng minh 3 số a.b.c chia het cho 6
Chứng minh rằng với mọi số nguyên a, b, c ta đều có (a-b)3 + (b-c)3 + (c-a)3 chia hết cho 6
\(A=\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)
\(=a^3-3ab\left(a+b\right)+b^3+b^3-3bc\left(b+c\right)+c^3+c^3-3ca\left(c+a\right)+a^3\)
\(=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)\(⋮3\)
Lấy \(a,b,c\)lần lượt chia cho \(2\)ta được tối đa 2 số dư là: \(0;1\)Do đó tồn tại ít nhất 2 số có cùng số dư khi chia cho 2
\(\Rightarrow\)hiệu của chúng chia hết cho 2
\(\Rightarrow\)\(A⋮2\)
mà \(\left(2;3\right)=1\)\(\Rightarrow\)\(A⋮6\)
1.Cho a + b = -5 và ab = 6. Tính \(^{a^3-b^3}\)
2.Chứng minh rằng tổng lập phương của một số nguyên với 11 lần số đó là một số chia hết cho 6
3.Chứng minh rằng \(ab\left(a^2-b^2\right)\)chia hết cho cho 6 với mọi số nguyên a,b
4.Chứng minh biểu thức \(x^2-x+\frac{1}{3}>0\)với mọi số thực x
5.Cho \(a+b+c=0.\)Chứng minh rằng H=K biết rằng H=\(a\left(a+b\right)\left(a+c\right)và\)\(K=c\left(c+a\right)\left(c+b\right)\)
6. Với p là số nguyên tố, p>2. Chứng minh \(\left(p^3-p\right)\)chia hết cho 24
dễ mà cô nương
\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)
\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)
ta có
\(a=-5-b\)
suy ra
\(a^3-b^3=19\left(-5-2b\right)\) " xong "
2, trên mạng đầy
3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)
4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm
5. trên mạng đầy
6 , trên mang jđầy