cho (x-y)(x+y) = z^2 và 4y^2 = 5 + 7z^2 tính A = 2x^2 - 10y^2 - 23z^2
cho x y z mà (x-y)(x+y)=z^2 và 4y^2=5+7z^2 tính S=2x^2+10y^2-23z^2
cho x y z mà (x-y)(x+y)=z^2 và 4y^2=5+7z^2 tính S=2x^2+10y^2-23z^2
cho x y z mà (x-y)(x+y)=z^2 và 4y^2=5+7z^2 tính S=2x^2+10y^2-23z^2
anh CTV làm giúp e đi
cho x y z mà (x-y)(x+y)=z^2 và 4y^2=5+7z^2 tính S=2x^2+10y^2-23z^2
anh CTV giải giúp e nốt lần này đi
Cho các số thực x,y,z thỏa mãn: (x-y)(x+y)=z^2 và 4y^2=5+7z^2. Tính giá trị của biểu thức S= 2x^2 + 10y^2 - 23z^2
Ai làm xong đầu tiên mình tick cho
Cho các số thực x,y,z thỏa mãn: (x-y)(x+y)=z^2 và 4y^2=5+7z^2. Tính giá trị của biểu thức S= 2x^2 + 10y^2 - 23z^2
\(\left(x-y\right)\left(x+y\right)=z^2\)
\(\Leftrightarrow x^2=y^2+z^2\)
\(\Rightarrow\text{S= 12y^2 - 21z^2}\)
\(\Rightarrow\text{S= 3(4y^2 - 7z^2)}\)
Mà: 4y^2=5+7z^2
suy ra S=3*5=15
Cho các số thực x, y, z, t thỏa mãn: \(\left\{{}\begin{matrix}\left(x-y\right)\left(x+y\right)=z^2\\4y^2=5+7z^2\end{matrix}\right.\)
Tính: \(P=2x^2+10y^2-23z^2\).
Help me!!!
CÁC BẠN GIÚP TỚ VỚI :< , CỨ BỊ KHÓ Ý ,CẢM ƠN NHA <3
Cho các số thực x,y,z thỏa mãn : \(\hept{\begin{cases}\left(x-y\right)\left(x+y\right)=z^2\\4y^2=5+7z^2\end{cases}}\)
Tính giá trị của biểu thức : \(D=2x^2+10y^2-23z^2\)
ý là giờ phải giải cái đầu rồi thay vào cái phía D á bn
\(\hept{\begin{cases}x^2-y^2-z^2=0\\4y^2-7z^2=5\end{cases}}\)
Ta có:
\(D=2x^2+10y^2-23z^2=2\left(x^2-y^2-z^2\right)+3\left(4y^2-7z^2\right)=2.0+3.5=15\)
a) 2x=3y;5y=7z và x-y-z=-27
b)x/4=y/5=z/6 mà x^2-2y^2+z^2=18
c) x:y:z=3:8:5 và 3x+y-2z=14
d) 2x=3y;5y-7z và 3x+5y-7z=30
e)x-3/-4=y+4/7=z-5/3 và 3x-2y+7z=-48
f)-3x=4y;6y=7z và x-2y+3z=-48
g) x/-3=y/7;y/-2 =z/5 và -2x-4y +5z=146
Tìm x,y,z
a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)và\(x-y-z=-27\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)
Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)
\(\frac{y}{14}=9\Rightarrow y=9.14=126\)
\(\frac{z}{10}=9\Rightarrow z=9.10=90\)
Vậy:\(x=189;y=126\)và\(z=90\)
b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và\(x^2-2y^2+z^2=18\)
\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)và\(x^2-2y^2+z^2=18\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)
Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)
c) \(x:y:z=3:8:5\)và\(3x+y-2z=14\)
\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)và\(3x+y-2z=14\)
\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)và \(3x+y-2z=14\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)
Ta có: \(\frac{3x}{9}=2\Rightarrow3x=18\Rightarrow x=6\)
\(\frac{y}{8}=2\Rightarrow y=16\)
\(\frac{2z}{10}=2\Rightarrow2z=20\Rightarrow z=10\)
Vậy:\(x=6;y=16;z=10\)
Tìm x,y,z biết :
1) \(x:y:z=3:5:\left(-2\right)\) và \(5x-y+3z=-16\)
2) \(\dfrac{x}{2}=\dfrac{y}{-3};\dfrac{z}{3}=\dfrac{y}{4}\) và \(x+y+z=5,2\)
3) \(2x=3y;7z=5y\) và \(3x-7y+5z=30\)
4) \(3x=4y=5z\) và \(x-\left(y+z\right)=-21\)
5) \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\) và \(2x+3y-z=50\)