Tính tổng và hiệu của hai đa thức P = x2y + x3 – xy2 + 3 và Q = x3 + xy2 – xy – 6
Tính tổng của đa thức
P = x2y + x3 – xy2 + 3 và Q = x3 + xy2 – xy – 6.
P + Q = (x2y + x3 – xy2 + 3) + (x3 + xy2 – xy – 6)
= x2y + x3 – xy2 + 3 + x3 + xy2 – xy – 6
= (x3 + x3) + x2y + (xy2 – xy2) – xy + (3 – 6)
= 2x3 + x2y – xy – 3
Vậy P + Q = 2x3 + x2y – xy – 3.
1. Tính tổng của hai đa thức trong mỗi trường hợp sau :
a, P= x2y + x3 - xy2 +3 và Q= x3 + xy2 - xy - 6
b, M= x2y + 0,5xy3 - 7,5 x3y2 + x3 và N= 3xy3 - x2y + 5,5x3y2
a/ \(P+Q=\left(x^2y+x^3-xy^2+3\right)+\left(x^3+xy^2-xy-6\right)\)
\(=x^2y+x^3-xy^2+3+x^3+xy^2-xy-6\)
\(=\left(x^3+x^3\right)+\left(xy^2-xy^2\right)+\left(3-6\right)+x^2y-xy\)
\(=2x^3+x^2y-xy-3\)
b/ \(M+N=\left(x^2y+0,5xy^3-7,5x^3y^2+x^3\right)+\)
\(\left(3xy^3-x^2y+5,5x^3y^2\right)\)
\(=x^2y+0,5xy^3-7,5x^3y^2+x^3+3xy^3-x^2y+5,5x^3y^2\)
\(=\left(x^2y-x^2y\right)+\left(0,5xy^3+3xy^3\right)+\left(5,5x^3y^2-7,5x^3y^2\right)+x^3\)
\(=3,5xy^3-2x^3y^2+x^3\)
Tính tổng của các đa thức:
P = x2y + xy2 – 5x2y2 + x3 và Q = 3xy2 – x2y + x2y2
Ta có: P = x2y + xy2 – 5x2y2 + x3 và Q = 3xy2 – x2y + x2y2
⇒ P + Q = (x2y + xy2 – 5x2y2 + x3) + (3xy2 – x2y + x2y2)
= x2y + xy2 – 5x2y2 + x3 + 3xy2 – x2y + x2y2
= x3 +(– 5x2y2 + x2y2)+ (x2y – x2y) + (xy2+ 3xy2)
= x3 – 4x2y2 + 0 + 4xy2
= x3 – 4x2y2 + 4xy2
Cho hai đa thức P = x 2 y + x y 2 - 5 x 2 y 2 + x 3 , Q = 3 x y 2 - x 2 y + x 2 y 2
Tổng P + Q là đa thức nào dưới đây?
A. - 4 x 2 y 2 - x 3 + 4 x y 2
B. - 4 x 2 y 2 + x 3 + 4 x y 2
C. 4 x 2 y 2 + x 3 + 4 x y 2
D. - 4 x 2 y 2 + x 3 - 4 x y 2
Ta có P + Q=x2 y + xy2 - 5x2 y2 + x3 + 3xy2 - x2 y + x2 y2
= -4x2 y2 + x3 + 4xy2
Chọn B
Cho đa thức A = 5 x2y + xy – xy2 - x2y + 2xy + x2y + xy + 6. Thu gọn rồi xác định bậc của đa thức.
a/ Tìm đa thức B sao cho A + B = 0
b/ Tìm đa thức C sao cho A + C = -2xy + 1
Bài 6: Cho đa thức F(x) = 2x3 – x5 + 3x4 + x2 - x3 + 3x5 – 2x2 - x4 + 1
\(A=5x^2y-xy^2+4xy+6\) bậc : 3
a)\(B=-5x^2y+xy^2-4xy-6\)
b)\(=>C=-2xy+1-5x^2y+xy^2-4xy-6\)
\(C=-5x^2y+xy^2-6xy-5\)
Chứng minh rằng: Giá trị của mỗi đa thức sau là hằng số. Cho x - y = 1.
a, P = x2 - xy - x + xy2 - y3 - y2 + 5.
b, Q = x3 - x2y + xy2 - y3 - y2 + 5x - 5y - 2017.
Chứng minh rằng: Giá trị của mỗi đa thức sau là hằng số. Cho x - y = 1.
a, P = x2 - xy - x + xy2 - y3 - y2 + 5.
b, Q = x3 - x2y + xy2 - y3 - y2 + 5x - 5y - 2017.
Viết các biểu thức sau dưới dạng lập phương của tổng (hiệu).
a) x3-6x2+12x-8 b) 8-12x+6x2-x3
c)x3+x2+\(\dfrac{1}{3}\)x+\(\dfrac{1}{27}\) d) \(\dfrac{x^3}{8}\)+\(\dfrac{3}{4}\)x2y+\(\dfrac{3}{2}\)xy2+y3 e) (x-1)3-15.(x-1)2+75.(x-1)-125
a)
=(x-2)3
b)\(\left(2-x\right)^3\)
c)\(\left(x+\dfrac{1}{3}\right)^3\)
d)\(\left(\dfrac{x}{2}+y\right)^3\)
e)
\(=\left(x-1\right)^2\left(x-1-15\right)+25\left[3\left(x-1\right)-5\right]\)
\(=\left(x-1\right)^2\left(x-16\right)+25\left(3x-3-5\right)\)
\(=\left(x-1\right)^2\left(x-16\right)+25\left(3x-8\right)\)
Phân tích đa thức thành nhân tử:
a. x4 + 2x3 + 10x2 - 20x
b. x3 - x2y - xy2 + y3
c. x5 + x3 - x2 - 1