Những câu hỏi liên quan
EC
Xem chi tiết
KK
Xem chi tiết
BH
12 tháng 3 2018 lúc 15:40

\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{27.28.29.30}\)

=> \(3A=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+\frac{3}{3.4.5.6}+...+\frac{3}{27.28.29.30}\)

=> \(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+\frac{1}{3.4.5}-\frac{1}{4.5.6}+...+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)

=> \(3A=\frac{1}{1.2.3}-\frac{1}{28.29.30}=\frac{14.29.10-1}{28.29.30}=\frac{4059}{28.29.30}\)

=> \(A=\frac{4059}{28.29.30}:3=\frac{1353}{28.29.30}=\frac{451}{28.29.10}\)

=> \(A=\frac{451}{8120}\)

Bình luận (0)
NQ
Xem chi tiết
DD
4 tháng 4 2016 lúc 12:42

\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100} \)

\(=\frac{1}{3}.\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)=\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{970200}\right)=\frac{1}{18}-\frac{1}{6.970200}\)

Bình luận (0)
DD
4 tháng 4 2016 lúc 12:47

\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100}\)

=\(\frac{1}{3}\cdot\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)\)

=\(\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{4.5.6}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)

=\(\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)\)

=\(\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{970200}\right)\)

=\(\frac{1}{18}-\frac{1}{5821200}\)

Bình luận (0)
Xem chi tiết
NM
26 tháng 9 2021 lúc 13:29

Ta có \(\dfrac{1}{n\left(n+1\right)\left(n+2\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\dfrac{3}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)

Áp dụng:

\(\dfrac{1}{1\cdot2\cdot3\cdot4}+\dfrac{1}{2\cdot3\cdot4\cdot5}+...+\dfrac{1}{27\cdot28\cdot29\cdot30}\\ =\dfrac{1}{3}\left(\dfrac{3}{1\cdot2\cdot3\cdot4}+\dfrac{3}{2\cdot3\cdot4\cdot5}+...+\dfrac{3}{27\cdot28\cdot29\cdot30}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{1\cdot2\cdot3}-\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{2\cdot3\cdot4}-\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{27\cdot28\cdot29}-\dfrac{1}{28\cdot29\cdot30}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{1\cdot2\cdot3}-\dfrac{1}{28\cdot29\cdot30}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{6}-\dfrac{1}{24360}\right)=\dfrac{1}{3}\cdot\dfrac{1353}{8120}=\dfrac{451}{8120}\)

 

Bình luận (0)
LL
26 tháng 9 2021 lúc 13:33

\(\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+\dfrac{1}{3.4.5.6}+...+\dfrac{1}{27.28.29.30}\)

\(=\dfrac{1}{3}\left(\dfrac{3}{1.2.3.4}+\dfrac{3}{2.3.4.5}+\dfrac{3}{3.4.5.6}+...+\dfrac{3}{27.28.29.30}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{1.2.3}-\dfrac{1}{2.3.4}+\dfrac{1}{2.3.4}-\dfrac{1}{3.4.5}+...+\dfrac{1}{27.28.29}-\dfrac{1}{28.29.30}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{1.2.3}-\dfrac{1}{28.29.30}\right)=\dfrac{1}{3}.\dfrac{4060-1}{28.29.30}\)

\(=\dfrac{1}{3}.\dfrac{4059}{24360}=\dfrac{1353}{24360}=\dfrac{451}{8120}\)

Bình luận (0)
TT
Xem chi tiết
TT
11 tháng 6 2016 lúc 13:35

Giups mk với...khocroi

Bình luận (0)
NX
11 tháng 6 2016 lúc 14:16

chờ tối nha chớ giờ giải là khỏi đi học lun

Bình luận (0)
LA
11 tháng 6 2016 lúc 14:17

bạn vào đây nè: http://olm.vn/hoi-dap/question/601925.html

Bình luận (0)
LL
Xem chi tiết
IP
10 tháng 5 2015 lúc 9:21

Nhận xét: 1/1.2.3 - 1/2.3.4 = 3/1.2.3.4, 1/2.3.4 - 1/3.4.5 =3/2.3.4.5,...,1/27.28.29 - 1/28.29.30

Gọi biểu thức phải tính bằng A,ta tính được:

3A=1/2.3 - 1/28.29.30 = 4059/28.29.30

vậy A = 1353/8120

Bình luận (0)
LM
29 tháng 12 2016 lúc 20:28

Ket quả cua mình là 451/8120

Bình luận (0)
GM
22 tháng 3 2018 lúc 22:30

1353/8120

Bình luận (0)
TB
Xem chi tiết
TQ
Xem chi tiết
TH
11 tháng 6 2016 lúc 12:14

P = 1/1.2.3.4 + 1/2.3.4.5 + 1/3.4.5.6 + ... + 1/97.98.99.100

P = 1/1-1/2-1/3-1/4+1/2-1/3-1/4-1/5 +....+1/97-1/98-1/99-1/100

P = 1/1-1/100

P = 99/100

Tính giá trị biểu thức P.3.98.99

Cái đó thì bạn tự tính cũng dc dễ mak

Bình luận (0)
NN
Xem chi tiết