Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
RM
Xem chi tiết
H24
18 tháng 7 2018 lúc 21:08

a) 2n^3 + 2n^2 - 2n^3 - 2n^2 + 6n = 6n chia hết 6

b) 3n - 2n^2 - ( n + 4n^2 - 1 - 4n ) - 1 

= 3n - 2n^2 - n - 4n^2 + 1 + 4n -1

= 6n - 6n^2 chia hết 6

c) m^3 + 8 - m^3 + m^2 - 9 - m^2 - 18

= - 19

Bình luận (0)
KT
18 tháng 7 2018 lúc 21:09

Bài 1:

\(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n\left(n^2+n-n^2-n+3\right)\)

\(=6n\)\(⋮\)\(6\)
Bài 2:

\(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\)

\(=3n-2n^2-\left(n+4n^2-1-4n\right)-1\)

\(=6n-6n^2=6\left(n-n^2\right)\)\(⋮\)\(6\)

Bài 3:

\(\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)

\(=m^3+8-m^3+m^2-9-m^2-18\)

\(=-19\)

\(\Rightarrow\)đpcm

Bình luận (0)
TA
18 tháng 7 2018 lúc 21:12

a,  <=> 2n[ n(n+1)-n2-n+3)

<=> 2n( n2+n-n2-n+3)

<=> 6n chia hết cho 6 với mọi n nguyên

b, <=> 3n-2n2-(n+4n2-1-4n) -1

<=> 3n-2n2-n-4n2+1+4n-n-1

<=> 6n-6n2

<=> 6(n-n2)  chiiaia hhehethet cchchocho 6

c ,<=> m3-23-m3+m2-32-m2-18

<=>-35 => ko phụ thuộc vào biến

Bình luận (0)
VH
Xem chi tiết
NL
26 tháng 11 2024 lúc 21:52

tui ko tra loi

Bình luận (0)
ND
Xem chi tiết
VT
4 tháng 2 2016 lúc 20:12

{1;2;3;6} , ủng hộ giùm mk nha

Bình luận (0)
HT
4 tháng 2 2016 lúc 20:13

n = 1;2;3 6

mik ko chắc lắm

Bình luận (0)
NA
Xem chi tiết
VS
26 tháng 8 2020 lúc 21:46

ta thấy rằng: n; (n+1) là ba số tự nhiên liên tiếp 

suy ra : sẽ có 1 số chia hết cho 3, và một số chia hết cko 2

lạ có : 2n +1 luôn luôn lẻ 

do đó biểu thức trên sẽ có 2 số lẻ và 1 số chẵn => n(n+1)(2n+1) luôn chia hết cko 2

mà có 1 số chia hết cko 3 nữa nên => n(n+1)(2n+1) luôn ckia hết cko 6

Bình luận (0)
 Khách vãng lai đã xóa
NM
26 tháng 8 2020 lúc 22:09

Ta có : 6 = 2 x 3

+) A = n(n+1)(2n+1) chia hết cho 3

       = n(n+1)(3n-n+1)

       = n(n+1)[3n-(n-1)]

       = 3n x n x (n+1)-(n-1)n(n+1)

Vì n x (n+1) x 3n chia hết cho 3,mà (n-1)n(n+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 3                 (1)

+) A = n(n+1)(2n+1) có n(n+1) là 2 số tự nhiên liên tự tiếp chia hết cho 2                                     (2)

Từ (1) và (2) \(\Rightarrow\)A chia hết cho 6

Bình luận (0)
 Khách vãng lai đã xóa
NA
26 tháng 8 2020 lúc 22:15

thank you các bạn nhé 

Bình luận (0)
 Khách vãng lai đã xóa
LM
Xem chi tiết
NH
15 tháng 8 2024 lúc 13:50

a; (n + 10)(n + 15)

+ Nếu n là số chẵn ta có: n + 10 ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2

+ Nếu n là số lẻ ta có: n + 15 là số chẵn 

⇒ (n + 15) ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2 

Từ những lập luận trên ta có:

A = (n + 10)(n + 15) ⋮ 2 ∀ n \(\in\) N

Bình luận (0)
HD
Xem chi tiết
NC
12 tháng 11 2019 lúc 18:03

2. Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
BA
Xem chi tiết
H24
Xem chi tiết
TM
6 tháng 8 2017 lúc 17:29

a)\(n\left(2n-3\right)-2n\left(n+1\right)=n\left(2n-3\right)-n\left(2n+2\right)=n\left(2n-3-2n-2\right)\)

\(=n\left(-5\right)=-5n\) chia hết cho 5 với n thuộc Z

b)\(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)=\left(n^2+3n-4\right)-\left(n^2-3n-4\right)\)

\(=n^2+3n-4-n^2+3n+4=6n\) chia hết cho 6 với n thuộc Z

Bình luận (0)
TK
Xem chi tiết
DL
1 tháng 7 2016 lúc 14:38

\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\\ \)

Nếu n chia hết cho 5 thì A chia hết cho 5Nếu n chia 5 dư 1 thì (n-1) chia hết cho 5 => A chia hết cho 5Nếu n chia 5 dư 2 thì n = 5k +2 => n2 + 1 = 25k2 + 20k + 4 + 1 chia hết cho 5 => A chia hết cho 5Nếu n chia 5 dư 3 thì n = 5k +3 => n2 + 1 = 25k2 + 30k + 9 + 1 chia hết cho 5 => A chia hết cho 5Nếu n chia 5 dư 4 thì (n+1) chia hết cho 5 => A chia hết cho 5

n thuộc N lớn hơn hoặc bằng 2 chỉ có 5 trường hợp có số dư như trên khi chia cho 5. Nên A chia hết cho 5 với mọi n thuộc N lớn hơn hoặc bằng 2.

Bình luận (0)