Tìm giá trị nhỏ nhất của biểu thức A=|x+1/2|+|x+1/3|+|x+1/4|
1. Tìm giá trị nhỏ nhất của biểu thức P=(x+3)2 + (y-1/3)4 - 4
2. Tìm giá trị lớn nhất của biểu thức Q= \(\frac{7}{\left(3x-2\right)+2016}\)
Tìm giá trị nhỏ nhất của biểu thức ( các bạn trình bày chi tiết giùm mình nha )
a) M = |x+15/19|
b) N = |x-4/7| -1/2
Tìm giá trị lớn nhất của biểu thc
a) P = - |5/3-x|
b) Q = 9 - |x-1/10|
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(y=\dfrac{x^2+2}{x^2+x+1}\)
Ta có :\(y=\frac{x^2+2}{x^2+x+1}\)
\(\Leftrightarrow yx^2+yx+y=x^2+2\)
\(\Leftrightarrow x^2\left(y-1\right)+yx+y-2=0\)(1)
*Xét y = 1 thì pt trở thành \(x-1=0\)
\(\Leftrightarrow x=1\)
*Xét \(y\ne1\)thì pt (1) là pt bậc 2 ẩn x
Có \(\Delta=y^2-4\left(y-1\right)\left(y-2\right)\)
\(=y^2-4\left(y^2-3y+2\right)\)
\(=y^2-4y^2+12y-8\)
\(=-3y^2+12y-8\)
Pt (1) có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow-3y^2+12y-8\ge0\)
\(\Leftrightarrow\frac{6-2\sqrt{3}}{3}\le y\le\frac{6+2\sqrt{3}}{3}\)
tìm giá trị nhỏ nhất của biểu thức E= ( x-4)^2 + ( 2x -1)^2
MẶC DÙ TA CÓ A>HOẶC =0,,NHƯNG CHƯA THỂ KẾT LUẬN ĐƯỢC MIN CỦA A=0 VÌ KO TỒN TẠI GIÁ TRỊ NÀO CỦA X ĐỂ A=0
\(\Leftrightarrow E=x^2-8x+16+4x^2-4x+1\)
\(\Leftrightarrow E=5x^2-12x+17\)
\(\Leftrightarrow E=5\left(x-\frac{6}{5}\right)^2+\frac{49}{5}\ge\frac{49}{5}\)
vậy GTNN của E=49/5 tại x=6/5
Tìm giá trị nhỏ nhất của biểu thức A= |x - 2016| + |x - 1|
Tìm giá trị nhỏ nhất của biểu thức A= |x - 2015| + |x - 1|
Tìm giá trị nhỏ nhất của biểu thức D=x^2+5y^2+2xy-2y+2005. Tìm giá trị lớn nhất của biểu thức Q=-x^2-2y^2+2xy-y+1
1) Tìm x, bIết:| 2x+5 |+4\(\ge\)25
2) Tìm giá trị nhỏ nhất của biểu thức:
a) A= |2x-3| - 5
b) B= |2x-1|+|3-2x|+5
3) Tìm giá trị lớn nhất của biểu thức:
A= -|2X+1|+7
B= |2x+3|-|2x+2|
1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5
2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0
Ta có: B = |2x - 1| + |3 - 2x| + 5 \(\ge\) |2x - 1+3 - 2x| + 5 = |2| + 5 = 7
=> Min B = 7 khi
(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0
Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\) 0
=> x \(\ge\) 1/2 và x \(\le\) 3/2
Tìm giá trị nhỏ nhất của biểu thức sau:H=|x-3|+|4+x|
H=/3-x/ +/4+x/ 》|3-x+4+x|=7
Min H=7