Tìm x:
16x^2 =(x + 1)^2
Tìm x: 4x+1.(16x2-4x+1)-16x.(x2-5)=17
Tìm x: 4x+1.(16x2-4x+1)-16x.(x2-5)=17
tìm x : (4x+1)(16x^2-4x+1)-16x(4x^2-5)=17
64x^3 + 1 - 64x^3 + 80x =17
80x =16
x =3/10
64x^3 + 1 -64x^3 + 80x = 17
80x = 16
x = 3/10
64x^3 + 1 - 64x^3 + 80x = 17
80x = 16
x = 3/10
tìm x : (2/x+1)-(5/x-1)=16x^2+1
a) \(4x^2+16x+3=0\)
\(\Delta'=84-12=72\Rightarrow\sqrt[]{\Delta'}=6\sqrt[]{2}\)
Phương trình có 2 nghiệm
\(\left[{}\begin{matrix}x=\dfrac{-8+6\sqrt[]{2}}{4}\\x=\dfrac{-8-6\sqrt[]{2}}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2\left(4-3\sqrt[]{2}\right)}{4}\\x=\dfrac{-2\left(4+3\sqrt[]{2}\right)}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\left(4-3\sqrt[]{2}\right)}{2}\\x=\dfrac{-\left(4+3\sqrt[]{2}\right)}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3\sqrt[]{2}-4}{2}\\x=\dfrac{-3\sqrt[]{2}-4}{2}\end{matrix}\right.\)
b) \(7x^2+16x+2=1+3x^2\)
\(4x^2+16x+1=0\)
\(\Delta'=84-4=80\Rightarrow\sqrt[]{\Delta'}=4\sqrt[]{5}\)
Phương trình có 2 nghiệm
\(\left[{}\begin{matrix}x=\dfrac{-8+4\sqrt[]{5}}{4}\\x=\dfrac{-8-4\sqrt[]{5}}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-4\left(2-\sqrt[]{5}\right)}{4}\\x=\dfrac{-4\left(2+\sqrt[]{5}\right)}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\left(2-\sqrt[]{5}\right)\\x=-\left(2+\sqrt[]{5}\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-2+\sqrt[]{5}\\x=-2-\sqrt[]{5}\end{matrix}\right.\)
c) \(4x^2+20x+4=0\)
\(\Leftrightarrow4\left(x^2+5x+1\right)=0\)
\(\Leftrightarrow x^2+5x+1=0\)
\(\Delta=25-4=21\Rightarrow\sqrt[]{\Delta}=\sqrt[]{21}\)
Phương trình có 2 nghiệm
\(\left[{}\begin{matrix}x=\dfrac{-5+\sqrt[]{21}}{2}\\x=\dfrac{-5-\sqrt[]{21}}{2}\end{matrix}\right.\)
tìm x:
a.(x-3)^4-(x+3)^4+24x^3=216
b.(2x+1)(16x^4-8x^3+4x^2-2x+1)-(2x-1)(16x^4+8x^3+4x^2+2x+1)=2
tìm GTNN của bt:
x^2+2x+4
x^2-x-5/3/4
4x^2-x-3/16
tìm x 16x(x-1)^2=(x+1)^4
tìm x:
a.(x-3)^4-(x+3)^4+24x^3=216
b.(2x+1)(16x^4-8x^3+4x^2-2x+1)-(2x-1)(16x^4+8x^3+4x^2+2x+1)=2
(x-1)2-(x+2)(x-5)+(4x-1)2=(-x-1)(2-16x)
tìm x
(x - 1)2 - (x + 2)(x - 5) + (4x - 1)2 = (-x - 1)(2 - 16x)
=> x2 - 2x + 1 - x2 + 5x - 2x + 10 + 16x2 - 8x + 1 = -2x + 16x2 -2 + 16x
=> 16x2 - 7x + 12 = 14x - 2 + 16x2
=> -21x = -14
=> 21x = 14
=> x = 2/3
\(\left(x-1\right)^2-\left(x+2\right)\left(x-5\right)+\left(4x-1\right)^2=\left(-x-1\right)\left(2-16x\right)\)
\(\Rightarrow x^2-2x+1-x^2+3x+10+16x^2-8x+1-16x^2-14x+2=0\)
\(\Rightarrow\left(x^2-x^2+16x^2-16x^2\right)+\left(-2x+3x-8x-14x\right)+\left(1+10+1+2\right)=0\)
\(\Rightarrow-21x+14=0\)
\(\Rightarrow-21x=-14\)
\(\Rightarrow x=\frac{2}{3}\)
\(x^2-2x+1-\left(x^2-3x-10\right)+16x^2-8x+1=16x^2+14x-2\)
\(x^2-2x+1-x^2+3x+10+16x^2-8x+1-16x^2-14x+2=0\)
\(-21x-14=0\)
\(-21x=14\)
\(x=\frac{-2}{3}\)