Cho x,y,z thõa mãn x+y+z+11=2√x+\(4\sqrt{Y-1}\)+\(6\sqrt{Z-2}\)
Tính x,y,z
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho x,y,z thõa mãn \(x+y+z\sqrt{x+y+z}=4\)
tính giá trị biểu thức:T=\(\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-z\right)\left(4-x\right)}+\sqrt{z\left(4-x\right)\left(4-y\right)}-\sqrt{xyz}\)
Ta có: \(\sqrt{x\left(4-y\right)\left(4-z\right)}=\sqrt{x\left(16-4y-4z+yz\right)}=\sqrt{z\left[4\left(4-y-z\right)+yz\right]}\)
\(=\sqrt{x\left[4\left(x+\sqrt{xyz}\right)+yz\right]}=\sqrt{4x^2+4x\sqrt{xyz}+xyz}=2x+\sqrt{xyz}\)
Tương tự ta có: \(\sqrt{y\left(4-z\right)\left(4-z\right)}=2y+\sqrt{xyz}\)
Và: \(\sqrt{z\left(4-x\right)\left(4-y\right)}=2z+\sqrt{xyz}\)
Từ trên:
\(\Rightarrow T=2x+\sqrt{xyz}+2y+\sqrt{xyz}+2z+\sqrt{xyz}-\sqrt{xyz}\)
\(=2\left(x+y+z+\sqrt{xyz}\right)\)
\(=8\)
Cho x,y,z là 3 số thực dương thõa mãn x+y+z\(\le\frac{3}{2}\). Tìm Min A=\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\)
Áp dụng bđt bunhiacopxki, ta có:
\(\left(x^2+\frac{1}{x^2}\right)\left(1+16\right)\ge\left(x+\frac{4}{x}\right)^2\) => \(x^2+\frac{1}{x^2}\ge\frac{\left(x+\frac{4}{x}\right)^2}{17}\)
=> \(\sqrt{x^2+\frac{1}{x^2}}\ge\frac{x+\frac{4}{x}}{\sqrt{17}}=\frac{x}{\sqrt{17}}+\frac{4}{x\sqrt{17}}\)
CMTT: \(\sqrt{y^2+\frac{1}{y^2}}\ge\frac{y}{\sqrt{17}}+\frac{4}{\sqrt{17}y}\)
\(\sqrt{z^2+\frac{1}{z^2}}\ge\frac{z}{\sqrt{17}}+\frac{4}{\sqrt{17}z}\)
=> A \(\ge\frac{x+y+z}{\sqrt{17}}+\frac{4}{\sqrt{17}}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{x+y+z}{\sqrt{17}}+\frac{36}{\sqrt{17}\left(x+y+z\right)}\)(bđt: 1/a + 1/b + 1/c > = 9/(a+b+c)
=> A \(\ge\frac{16\left(x+y+z\right)}{\sqrt{17}}+\frac{36}{\sqrt{17}\left(x+y+z\right)}-\frac{15\left(x+y+z\right)}{\sqrt{17}}\)
A \(\ge2\sqrt{\frac{16\left(x+y+z\right)}{\sqrt{17}}\cdot\frac{36}{\sqrt{17}\left(x+y+z\right)}}-\frac{15\cdot\frac{3}{2}}{\sqrt{17}}\)(Bđt cosi + bđt: x + y + z < = 3/2)
A \(\ge\frac{48}{\sqrt{17}}-\frac{45}{2\sqrt{17}}=\frac{3\sqrt{17}}{2}\)
Dấu "=" xảy ra <=> x = y= z = 1/2
Vậy MinA = \(\frac{3\sqrt{17}}{2}\) <=> x = y = z = 1/2
Cho ba số dương x,y,z thõa mãn điều kiện xy+yz+zx=1 tính:
\(A=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Ta có : \(xy+yz+zx=1\)
\(\Rightarrow\hept{\begin{cases}1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\\1+y^2=xy+yz+zx+y^2=\left(y+x\right)\left(y+z\right)\\1+z^2=xy+yz+zx+z^2=\left(z+x\right)\left(z+y\right)\end{cases}}\)
Do đó :
\(\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=\sqrt{\left(y+z\right)^2}\)\(=y+z\)
\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=x\left(y+z\right)\)
Hoàn toàn tương tự :
\(y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}=y\left(z+x\right)\)
\(z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}=z\left(x+y\right)\)
Do đó :
\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)\)
\(=2\left(xy+yz+zx\right)=2\)
Từ xy+yz+zx=1 (giả thiết)
\(\Rightarrow\hept{\begin{cases}1+x^2=xy+yz+zx+x^2\\1+y^2=xy+yz+zx+y^2\\1+z^2=xy+yz+zx+z^2\end{cases}}\Leftrightarrow\hept{\begin{cases}1+x^2=y\left(x+z\right)+x\left(x+z\right)\\1+y^2=z\left(x+y\right)+y\left(x+y\right)\\1+z^2=y\left(x+z\right)+z\left(x+z\right)\end{cases}}.\)
\(\Leftrightarrow\hept{\begin{cases}1+x^2=\left(x+z\right)\left(x+y\right)\\1+y^2=\left(x+y\right)\left(y+z\right)\\1+z^2=\left(x+z\right)\left(y+z\right)\end{cases},}\)Khi đó thế vào biểu thức A đã cho ta có:
\(A=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+z\right)\left(x+y\right)}}+y\sqrt{\frac{\left(x+z\right)\left(y+z\right)\left(x+z\right)\left(x+y\right)}{\left(x+y\right)\left(y+z\right)}}\)
\(+z\sqrt{\frac{\left(x+z\right)\left(x+y\right)\left(x+y\right)\left(y+z\right)}{\left(x+z\right)\left(y+z\right)}}\)
\(=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)
\(=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)(vì x,y,z là các số dương)
\(=2\left(xy+yz+xz\right)=2.1=2\)
Cho x, y, z là các số thực dương thõa mãn xy + yz + zx = 1
a) Chứng minh rằng: \(1+x^2=\left(x+y\right)\left(x+z\right)\)
b) Tính giá trị biểu thức P = \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
a) Ta có : \(1+x^2=xy+yz+zx+x^2=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(z+x\right)\)
b) \(\Sigma\left(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\right)=\Sigma\left(x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right).\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\right)\)
\(=\Sigma\left(x\left(y+z\right)\right)=xy+xz+xy+yz+zx+zy=2\left(xy+yz+zx\right)=2\)
1.Cho x,y,z khác 0 thõa mãn x+y+z=xyz và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\)
Tính P= \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Ta có: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{xz}+\frac{1}{yz}\right)\)
\(\left(\sqrt{3}\right)^2=P+\frac{2\left(z+y+x\right)}{xyz}\)
Mà x+y+z=xyz
=> P+2=3=>P=1
Vậy P=1
Cho x;y;z >0 thỏa mãn x+y+z=1. CMR:
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\le\frac{\left(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}\right)\sqrt{xyz}+6\left(x^4+y^4+z^4\right)}{2xyz}\)
Cho x, y, z là các số thực lớn hơn 0 thõa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}\)= 6 Tìm GTNN của biểu thức \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Dễ dàng chứng minh được \(y+z\le\sqrt{\frac{\left(y^2+z^2\right)}{2}}\Rightarrow y+z\le\frac{b}{\sqrt{2}}\)
đặt \(\sqrt{x^2+y^2}=a;\sqrt{y^2+z^2}=b;\sqrt{z^2+x^2}=c\Rightarrow\)\(\hept{\begin{cases}a+b+c=6\\a,b,c>0\end{cases}}\)
\(P\ge\frac{a^2+c^2-b^2}{2\sqrt{2}b}+\frac{a^2+b^2-c^2}{2\sqrt{2}c}+\frac{c^2+b^2-a^2}{2\sqrt{2}a}\)\(=\frac{1}{2\sqrt{2}}\left(\frac{a^2}{b}+\frac{c^2}{b}+\frac{a^2}{c}+\frac{b^2}{c}+\frac{c^2}{a}+\frac{b^2}{a}-\left(a+b+c\right)\right)\)
\(\ge\frac{1}{2\sqrt{2}}\left(\frac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)}-\left(a+b+c\right)\right)=\frac{1}{2\sqrt{2}}\left(2\left(a+b+c\right)-\left(a+b+c\right)\right)\)
\(=\frac{1}{2\sqrt{2}}\left(a+b+c\right)=\frac{1}{2\sqrt{2}}\cdot6=\frac{3}{\sqrt{2}}\)
Dấu "=" xảy ra khi \(x=y=z=\sqrt{2}\)
\(y+z\le\frac{\sqrt{z^2+x^2}}{\sqrt{2}}\Leftrightarrow\sqrt{2}+\sqrt{2}\le\sqrt{2}.\) " thay căn 2 "
yim yim sao t thay số vào thì cái bdt của m lại sai ????
bài m sai rồi hahah
\(\left(x+y\right)\le\sqrt{2\left(x^2+y^2\right)}\)
Cho x,y,z khác 0 thõa mãn x+y+z=0 . Chứng mình rằng :
\(\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\)
xét bình phương biểu thức trong dấu giá tri tuyetj đối
Bình phường hai vế lên ta có :
\(\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}^2=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|^2\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|^2\)
Xét: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2.\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)
mà \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=\frac{z+x+y}{xyz}=0\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(\Rightarrow\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\)
cho x;y;z là các số thực dương thõa mãn : x + y + z = xyz
Tìm giá trị lớn nhất của biểu thức P = \(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\)
Ta có: \(x+y+z=xyz\Leftrightarrow x=\frac{x+y+z}{yz}\Leftrightarrow x^2=\frac{x^2+xy+xz}{yz}\Leftrightarrow x^2+1=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)\(\Rightarrow\frac{1}{\sqrt{x^2+1}}=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}\)
Tương tự, ta được: \(\frac{1}{\sqrt{y^2+1}}=\sqrt{\frac{zx}{\left(y+x\right)\left(y+z\right)}}\); \(\frac{1}{\sqrt{z^2+1}}=\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)
Cộng theo từng vế ba đẳng thức trên, ta được: \(P=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{zx}{\left(y+x\right)\left(y+z\right)}}+\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)\(\le\frac{\frac{y}{x+y}+\frac{z}{z+x}+\frac{x}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}+\frac{y}{y+z}}{2}=\frac{3}{2}\)(BĐT Cô-si)
Đẳng thức xảy ra khi x = y = z = \(\sqrt{3}\)