M= \(\frac{2\sqrt{x}+2}{-2\sqrt{x}+1}\)
Tìm x thuộc Z sao cho M thuộc Z
Cho M = 1 - \(\left(\frac{2x-1+\sqrt{x}}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)\(\left(\frac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right)\)
a,Rút gọn M
b,Tìm x thuộc Z sao cho M thuộc Z
Cho M = 1 - \(\left(\frac{2x-1+\sqrt{x}}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)\(\left(\frac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right)\)
a,Rút gọn M
b,Tìm x thuộc Z sao cho M thuộc Z
tìm x thuộc Z sao cho M thuộc Z
M=\(\frac{\sqrt{x}-2}{3\sqrt{x}-4}\)Cho biểu thức M=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}+\frac{\sqrt{x+3}}{2-\sqrt{x}}\)
a/ Tìm điều kiễn xác địch của x để M có nghĩa và rút gon M
b/ Tìm x để M bằng 5
c/ tìm x thuộc z để m thuộc z
tìm x thuộc Z sao cho M thuộc Z
M=\(\frac{\sqrt{x}-2}{3\sqrt{x}-4}\)
GẤP CÁM ƠN CÁC BẠN NHIỀU!
\(M\in Z\) thì \(3M\in Z\Rightarrow\frac{3\sqrt{x}-6}{3\sqrt{x}-4}\in Z\)
\(\Rightarrow\frac{3\sqrt{x}-4-2}{3\sqrt{x}-4}\in Z\Rightarrow3\sqrt{x}-4\inƯ\left(2\right)\)
\(\Rightarrow x\in\left\{1;4\right\}\)
Do đây là ta tìm điều kiện 3M thuộc Z chứ ko phải M thuộc Z nên đc nghiệm cần kiểm tra lại. Vì có thể 3M nguyên những M không nguyên.
Ta thấy cả hai nghiệm đều thỏa mãn.
Em nghĩ để lời giải chặt ché hơn thì ta phải chứng minh bổ đề sau:
Với \(a\)là số nguyên không âm và không là số chính phương thì \(\sqrt{a}\)là số vô tỉ. (Dễ chứng minh bằng phản chứng.)
Cho A=\(\frac{\sqrt{x}+2}{\sqrt{x}-3}\)-\(\frac{\sqrt{x}+1}{\sqrt{x-2}}\)-\(\frac{3\sqrt{x}-3}{x-5\sqrt{x}+6}\)
a) Rút gọn A
b) Tìm x để A<-1
c) Tìm x thuộc Z sao cho 2A thuộc Z
P/s: Giúp mình với thứ 2 mình ktra rồi
a) ĐK : x ≥ 0 ; x ≠ 2 ; x ≠ 3
A= \(\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{3\sqrt{x}-3}{x-5\sqrt{x}+6}\)
=\(\frac{x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\text{}\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\frac{3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{x-4-x+3\sqrt{x}-\sqrt{x}+3-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{-1}{\sqrt{x}-3}\)
Vậy...
b)Ta có A<-1
⇒\(\frac{-1}{\sqrt{x}-3}\) <-1
⇒\(\frac{-1}{\sqrt{x}-3}\) +1<0
⇒\(\frac{\sqrt{x}-4}{\sqrt{x}-3}\) <0
⇒\(\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}-4< 0\\\sqrt{x}-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}-4>0\\\sqrt{x}-3< 0\end{matrix}\right.\end{matrix}\right.\)
⇒\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\\\left\{{}\begin{matrix}x>16\\x< 9\end{matrix}\right.\end{matrix}\right.\)
⇒9< x <16
Vậy...
c) Ta có A = \(\frac{-1}{\sqrt{x}-3}\)
⇒2A=\(\frac{-2}{\sqrt{x}-3}\)
Để 2A ∈ Z thì \(\frac{-2}{\sqrt{x}-3}\) ∈ Z
⇒\(\sqrt{x}-3\) ∈ Ư(-2) =\(\left\{1;-1;2;-2\right\}\)
Ta có bảng
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 |
x | 16(tm) | 4(tm) | 25(tm) | 1(tm) |
Vậy...
OK!!! đó bạn
cho M=\(\frac{\sqrt{x-1}}{2}\). tìm x thuộc Z và x<50 để M thuộc Z
mấy câu trả lời trước đâu rồi
cho A = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{x-1}\)
x>-0; x khác 1
a) tìm x thuộc Z để A thuộc Z
b)tìm m đẻ pt mA=\(\sqrt{x}-2\\\)có 2 nghiệm phân biệt
c)tìm min A
Câu a:
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{x-1}\)
\(=\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2x+2-3\sqrt{x}-1}{x-1}=\frac{2x-3\sqrt{x}+1}{x-1}\)
\(=\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)}=2-\frac{3}{\left(\sqrt{x}+1\right)}\)
A nguyên khi và chỉ khi \(3⋮\left(\sqrt{x}+1\right)\)
TH1 : \(\left(\sqrt{x}+1\right)=1\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)TH2 : \(\left(\sqrt{x}-1\right)=3\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)Câu b : \(\frac{m\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)}=\sqrt{x}-2\Leftrightarrow2m\sqrt{x}-m-x+\sqrt{x}+2=0\)
\(\Leftrightarrow x-\left(2m+1\right)\sqrt{x}+m-2=0\)phương trình có hai nghiệm phân biệt khi
\(\Delta>0\)hay \(\Delta=\left(2m+1\right)^2-\left(m-2\right)4=m^2+9>0\forall m\)
Câu C: để \(A=2-\frac{3}{\sqrt{x}+1}\ge2-\frac{3}{0+1}=-1\)\(\Rightarrow A_{Min}=-1\)khi \(x=0\)
Cho M =\(\frac{\sqrt{x}+1}{\sqrt{x}+3}\). Tìm x thuộc Z để M thuộc Z