Những câu hỏi liên quan
VC
Xem chi tiết
NK
13 tháng 11 2016 lúc 20:51

a,3n+7 chc(mình kí hiệu chc là chia hết cho)n

=>7 chc n

=>n=7;1

muốn xem tiếp thì tk

Bình luận (0)
VC
13 tháng 11 2016 lúc 21:44

là sao

Bình luận (0)
MN
Xem chi tiết
PL
10 tháng 6 2018 lúc 10:12

(1981 x 1982 - 990) : (1980 x 1982 + 992)

=(1980 x 1982+1982 -990) : (1980 x 1982 +992)

=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)

=1

Bình luận (0)
H24
Xem chi tiết
VL
14 tháng 2 2016 lúc 21:22

a ) 10n + 72n - 1 chia hết cho 81

+ ) n = 0 => 100 + 72 . 0 - 1 = 0

+ ) Giả sử đúng đến n = k tức là :

( 10k + 72k - 1 ) chia hết cho 81 ta phải chứng minh đúng đến n = k+ 1

Tức là : 10k + 1 + 72 x k + 71

=> 10 . 10k + 72k + 71

=> 10 . \(\frac{10k+72k-1}{chiahetcho81}\)\(\frac{648k+27}{chiahetcho81}\)

=> đpcm

Câu b và c làm tương tự

Bình luận (0)
H24
Xem chi tiết
ZD
13 tháng 2 2016 lúc 20:34

Đặt B= 10n+72n-1

B = 10ⁿ + 72n - 1

  = 10ⁿ - 1 + 72n

Ta có: 10ⁿ - 1 = 99...9 (có n-1 chữ số 9)  

   = 9x(11..1) (có n chữ số 1)
A = 10ⁿ - 1 + 72n = 9x(11...1) + 72n

=> A : 9 = 11..1 + 8n

thấy 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 - n chia hết cho 9
=> A : 9 = 11..1 - n + 9n chia hết cho 9

= 11...1 -n + 9n
=> A : 9 =  chia hết cho 9
=> A chia hết cho 81

Bình luận (0)
H24
Xem chi tiết
NN
20 tháng 2 2016 lúc 14:15

a) Đặt cái cần chứng minh là (*)

+) Với n = 0 thì (*) chia hết cho 81 => (*) đúng

+) Giả sử (*) luôn đúng với mọi n = k (k \(\ge\) 0) => 10k + 72k - 1 chia hết cho 81 thì ta cần chứng minh (*) cũng luôn đúng với k + 1 tức 10k + 1 + 72(k + 1) - 1 chia hết cho 81

Thật vậy:

10k + 1 + 72(k + 1) - 1

= 10k.10 + 72k + 72 - 1

= 10k + 72k + 9.10k + 72 - 1

= (10k + 72k - 1) + 9.10k + 72

đến đây tui ... chịu :))

Bình luận (0)
H24
22 tháng 2 2016 lúc 14:05

Nhọ Nồi Dù sao thì cx camon's -_-

Bình luận (0)
NN
25 tháng 2 2016 lúc 21:16

Tiếp nè: Ta có: 10k = 9n + 1 => 9.(9n + 1) + 72 = 81n + 9 + 72 = 81n + 81 chia hết cho 81 mà 10k + 72k - 1 chia hết cho 81 theo giả thiết quy nạp => (10k + 72k - 1) + 9.10k + 72 chia hết cho 81

=> Phương pháp quy nạp đươch chứng minh 

Vậy 10n + 72n - 1 chia hết cho 81

Bình luận (0)
NL
Xem chi tiết
TD
28 tháng 8 2022 lúc 18:57

Vì tui dùng app giải

Bình luận (0)
LL
Xem chi tiết
DL
9 tháng 6 2016 lúc 13:32

a) \(A=n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)

Với mọi n nguyên thì A là tích của 3 số nguyên liên liếp nên A chia hết cho 3. ĐPCM

b) A chia hết cho 3 với mọi n nguyên. Vì vậy, để A chia hết cho 15 thì A sẽ chia hết cho 5.

Các giá trị nguyên dương nhỏ hơn 10 của n là: 3;4;5;8;9

Bình luận (0)
SG
9 tháng 6 2016 lúc 13:46

a) A = n3 +3n2 + 2n

A = n3 + n2 + 2n2 + 2n

A = n2.( n+1) + 2n.(n+1)

A = (n+1).(n2+2n)

A = (n+1).n.(n+2)

A = n.(n+1).(n+2)

Vì n.(n+1).(n+2) là tích 3  số nguyên liên tiếp nên n.(n+1).(n+2) chia hết cho 3

=> A chia hết cho 3

Chứng tỏ A chia hết cho 3 với mọi n nguyên

b) Ta có: 15 = 3.5

Mà (3,5)=1, A chia hết cho 3 nên ta phải tìm n nguyên dương để A chia hết cho 5

Do A = n.(n+1).(n+2) nên để A chia hết cho 5 thì trong 3 số n;n+1;n+2 có 1 số chia hết cho 5

Mặt khác n<10 nên n<n+1<n+2<12

Ta có các nhóm số thỏa mãn là: 3.4.5 ; 4.5.6 ; 5.6.7 ; 8.9.10 ; 9.10.11

Vậy các giá trị của n tìm được là: 3;4;5;8;9

Bình luận (0)
YG
8 tháng 10 2017 lúc 16:54

chứng minh rằng:  n.(n+8).(n+13) chia hết cho 3

Bình luận (0)
NP
Xem chi tiết
H24
Xem chi tiết