Những câu hỏi liên quan
NA
Xem chi tiết
GT
Xem chi tiết
KS
Xem chi tiết
NQ
3 tháng 11 2017 lúc 15:07

Bạn ơi bài này phải cho thêm điều kiện n thuộc Z 

Đặt n^2+2006 = k^2 ( k thuộc N sao)

<=> -2006 = n^2-k^2 = (n-k).(n+k)

<=> n-k thuộc ước của -2006 ( vì n thuộc Z , k thuộc N sao nên n-k và n+k đểu thuộc Z)

Mà k thuộc N sao nên n-k < n+k

Từ đó, bạn tự giải bài toán nhưng nhớ kết hợp cả điều kiện n-k<n+k 

Bình luận (0)
H24
3 tháng 11 2017 lúc 15:08

Kết quả hình ảnh cho hình ảnh luffyđẹp chưa?

Bình luận (0)
SL
2 tháng 12 2017 lúc 5:04

Vì n2 là số chính phương

\(\Rightarrow\) n2 chia cho 4 dư 0 hoặc 1

Mà 2006 chia cho 4 dư 2

\(\Rightarrow\) n2 + 2006 chia cho 4 dư 2 hoặc 3

\(\Rightarrow\) n2 + 2006 không là số chính phương (vì số chính phương chia cho 4 dư 0 hoặc 1)

\(\Rightarrow\) Không có số n thỏa mãn đề bài.

Bình luận (0)
H24
Xem chi tiết
VM
Xem chi tiết
KY
Xem chi tiết
HT
9 tháng 11 2014 lúc 21:18

Ta có: n = 2.3.5.7.11.13. ...

Dễ thấy n chia hết cho 2 và không chia hết cho 4.

-) Giả sử n+1 = a2, ta sẽ chứng minh điều này là không thể.

Vì n chẵn nên n+1 lẻ mà n+1= anên a lẻ, giả sử a=2k+1, khi đó:

n+1=(2k+1)2 <=>n+1=4k2+4k+1 <=>n=4k2+4 chia hết cho 4, điều này không thể vì n không chi hết cho 4.

Vậy n+1 không chính phương.

-) Dễ thấy n chia hết cho 3 nên n-1 chia cho 3 sẽ dư 2 tức n=3k+2, điều này vô lý vì số chính phương có dạng 3k hoặc 3k+1.

Vậy n-1 không chính phương

(Hình như bài này của lớp 8 nha)

Bình luận (0)
LC
Xem chi tiết
D1
Xem chi tiết
PB
Xem chi tiết
CT
10 tháng 11 2018 lúc 2:15

Giả sử √a là số hữu tỉ thì √a viết được thành √a = m/n với m, n ∈ N, (n ≠ 0) và ƯCLN (m, n) = 1

Do a không phải là số chính phương nên m/n không phải là số tự nhiên, do đó n > 1.

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1. Vậy √a là số vô tỉ.

Bình luận (0)