Những câu hỏi liên quan
NL
Xem chi tiết
XO
3 tháng 6 2019 lúc 19:39

Ta có : \(\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}\)

\((1-\frac{1}{2})+(1-\frac{1}{3})+...+(1-\frac{99}{100})\)(100 cặp số )

\(\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)(100 số hạng 1)

\(1\times100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{100}\right)\)

\(100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)

=> 100-(1+1/2+1/3+...+1/100) = 1/2+2/3+3/4+...+99/100

Bình luận (0)
NL
3 tháng 6 2019 lúc 19:45

Bạn cố giải cho mình dễ hiểu hơn ko?

Bình luận (0)
NL
Xem chi tiết
PG
Xem chi tiết
LQ
Xem chi tiết
DT
Xem chi tiết
TV
Xem chi tiết
NH
Xem chi tiết
H24
15 tháng 4 2017 lúc 20:44

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}< \frac{1}{2}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}< \frac{1}{2}\)

\(=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\left(đpcm\right)\)

Bình luận (0)
BH
Xem chi tiết
CN
Xem chi tiết
TN
21 tháng 5 2016 lúc 12:37

= (1+1/3+1/5+…+1/99)-(1/2+1/4+….+1/100)

= (1+1/2+1/3+…+1/100)-2(1/2+1/4+1/6+…+1/100)

= (1+1/2+1/3+…+1/100)-(1+1/2+1/3+…+1/50)

=1/51+1/52+…+1/100=VP (đpcm)

Bình luận (0)
LD
21 tháng 5 2016 lúc 13:06

= (1+1/3+1/5+…+1/99)-(1/2+1/4+….+1/100)

= (1+1/2+1/3+…+1/100)-2(1/2+1/4+1/6+…+1/100)

= (1+1/2+1/3+…+1/100)-(1+1/2+1/3+…+1/50)

=1/51+1/52+…+1/100=VP (đpcm)

Bình luận (0)