A=1*2-1/2! + 2*3-1/3! +....+ 99*100-1/100!
Chứng tỏ rằng A<1
Hãy chứng tỏ rằng : 100-[1+1/2+1/3+...+1/100] = 1/2+2/3+3/4+...+99/100
Mình cần gấp
Ta có : \(\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}\)
= \((1-\frac{1}{2})+(1-\frac{1}{3})+...+(1-\frac{99}{100})\)(100 cặp số )
= \(\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)(100 số hạng 1)
= \(1\times100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{100}\right)\)
= \(100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
=> 100-(1+1/2+1/3+...+1/100) = 1/2+2/3+3/4+...+99/100
Bạn cố giải cho mình dễ hiểu hơn ko?
A=1/1*2+1/3*4+...+1/99*100. Chứng tỏ rằng 7/12<A<5/6
chứng tỏ rằng:1/2^2+1/3^2+1/4^2+...+1/99^2+1/100^2<3/4
1. Chứng tỏ rằng tổng 100 số đầu tiên của dãy sau nhỏ hơn 1/4:
1/5; 1/45;1/117;1/221;1/357;...
2.tính A/B biết:
A=1/1.300+1/2.301+1/3.302+...+1/101.400
B=1/1.102+1/2.103+...+1/299.400
3.
Chứng minh rằng; 100-(1+1/2+1/3+...+1/100)=1/2+2/3+...+99/100
4. Tính A/B biết : A=1/2+1/3+...+1/200
B=1/199+2/198+...+199/1
5. Tính: 1-1/2+1/3-1/4+...+1/99-1/100 phần 1/51+1/52+...+1/100
giúp mk nha, ai nhanh mk k cho!
1. Chứng tỏ rằng tổng 100 số đầu tiên của dãy sau nhỏ hơn 1/4:
1/5; 1/45;1/117;1/221;1/357;...
2.tính A/B biết:
A=1/1.300+1/2.301+1/3.302+...+1/101.400
B=1/1.102+1/2.103+...+1/299.400
3.
Chứng minh rằng; 100-(1+1/2+1/3+...+1/100)=1/2+2/3+...+99/100
4. Tính A/B biết : A=1/2+1/3+...+1/200
B=1/199+2/198+...+199/1
5. Tính: 1-1/2+1/3-1/4+...+1/99-1/100 phần 1/51+1/52+...+1/100
Chứng tỏ rằng:
a) 1.3.5.....99=51/2.52/2....100/2;
b) 1-1/2+1/3-....-1/1990=1/996+1/997+...+1/1990
Chứng tỏ rằng: 1/2*3+1/3*4+1/4*5+....+1/99*100<1/2
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}< \frac{1}{2}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}< \frac{1}{2}\)
\(=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\left(đpcm\right)\)
Chứng tỏ rằng
a, 1*3*5*...*99=(51/2)*(52/2)* ... * (100/2)
b, 1-1/2+1/3-1/4+...-1/1990=1/996+1/997+...91/1990
2. Chứng tỏ rằng
1-1/2+1/3-1/4+...+1/99-1/100=1/51+1/52+...+1/100
= (1+1/3+1/5+…+1/99)-(1/2+1/4+….+1/100)
= (1+1/2+1/3+…+1/100)-2(1/2+1/4+1/6+…+1/100)
= (1+1/2+1/3+…+1/100)-(1+1/2+1/3+…+1/50)
=1/51+1/52+…+1/100=VP (đpcm)
= (1+1/3+1/5+…+1/99)-(1/2+1/4+….+1/100)
= (1+1/2+1/3+…+1/100)-2(1/2+1/4+1/6+…+1/100)
= (1+1/2+1/3+…+1/100)-(1+1/2+1/3+…+1/50)
=1/51+1/52+…+1/100=VP (đpcm)