A=2+2^2+2^3+...+2^95+2^96. Chứng tỏ A chia hết cho 3, cho 15. Tìm chữ số tận cùng của A
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Câu 1 : Cho A = 1+ 22 + 23 + ... + 220
Chứng minh A chia hết cho 128
Câu 2 : Tìm chữ số tận cùng của A biết :
A = 5 +52 + 53 +...+ 595 + 596
Câu 3 :Cho S = 1 + 3 + 32 + ... + 349
a/ Chứng minh rằng S chia hết cho 4
b/ Tìm chữ số tận cùng của S
Cho A = 5 + 5^2 + 5^3 +… + 5^95 + 5^96
a) Chứng tỏ rằng A chia hết cho 6.
b) Tìm chữ số tận cùng của A.
c) Thu gọn tổng A.
d) Tìm số tự nhiên n, biết rằng: 4A + 5 = 5^n - 3
Giúp mình nha, tks!
c) 5A = 5^2 + 5^3 +....+5^97
5A - A = 5^97-5
A = (5^95 - 5)/4
d) 4A + 5 = 5^n -3
5^97 = 5^n -3
Nhận xét : 5^97 chia hết cho 5
5^n - 3 không chia hết cho 5
Suy ra ko có sộ tự nhiên n thỏa mãn
a) A = 5(5+1) + 5^3(5+1)+...+5^95(5+1)
A = 5.6 +5^3 . 6 +....+ 5^95.6
A = 6 . ( 5+ 5^3 + 5^5+....+5^95)
Suy ra A chia hết cho 6
b) Xét 5^1 + 5^3 + 5^5+....+5^95
Có: (95-1)/2 + 1 = 48 số hạng
Mà 5^1 , 5^3, 5^5,...., 5^95 đều có chữ số tận cùng = 5
Suy ra 5^1 + 5^3 +....+5^95 có chữ số tận cùng = 0
Vậy A có chữ số tận cùng là 0
cho A=2 + 22 + 23 +...+ 2100
a)Chứng tỏ A chia hết cho 15
b)Tìm chữ số tận cùng của A
Ta có:
A=2 + 22 + 23 +...+ 2100
=>2A=22 + 23 +...+ 2101
=>2A-A=(22 + 23 +...+ 2101)-(2+22+...+2100)
=>A=2101-2
em không hiểu anh làm câu b chưa
bài 3:cho M = 2 + 2^2 + 2^3 + ... +2^100
a,chứng tỏ rằng M chia hết cho 2
b,chứng tỏ rằng M chia hết cho 3
c,chứng tỏ rằng M chia hết cho 15
d,tìm chữ số tận cùng của M
e,tính M
cần gấppppppppppppppppppppp
1.Cho A=1+2+2^2+2^3+......+n^3
a)Tính A
b)Chứng tỏ A chia hết cho 3 và 7
c)Tìm dư khi chia A cho 15
d)Tìm chữ số tận cùng của A
a, \(A=1+2+2^2+...+2^n\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{n+1}\)
\(2A-A=\left(2+2^2+2^3+...+2^{n+1}\right)-\left(1+2+2^2+...+2^n\right)\)
\(\Rightarrow A=2^{n+1}-1\)
Mấy phần kiia cần có thêm dữ kiện
A=2 +2^2 +2^3+ ...+2^100
a) chứng minh rằng A chia hết cho 3 và A chia hết cho 15
b)tìm chữ số tận cùng của A
Chia hết cho 3
a) A = 2 + 22 + 23 +....... + 2100
A = ( 2+ 22) + (23 + 24) + ........ (299+2100)
A = 2(1+2) + 23(1+2) + ........+ 299(1+2)
A= 2. 3 + 23 . 3 + ........ + 299. 3
= 3 . ( 2 + 23 + .........+ 299)
Vì 3 chia hết cho 3 => 3. ( 2 + 23 + ........+299) chia hết cho 3 hay A chia hết cho 3
Chia hết cho 15 cũng tương tự như vậy nha bn!
Ghép 4 số rồi tính!
CHÚC BN HOK GIỎI!
bạn làm giúp mình luôn chia hết cho 15 nha
B1: Chứng tỏ với mọi số tự nhiên n thì 9^2n - 1 chia hết cho 2 và 5
B2: Chứng tỏ
a,942^60 - 351^37 chia hết cho 5
b,99^5 - 98^4 +97^3 - 96^2 chia hết cho 2 và 5
B3:Chứng tỏ B= 405^n + 2^405 + m^2 không chia hết cho 10
B4: Tìm 2 chữ số tận cùng của
a, 6^2011
b, 351^2011
c, 218 ^218
bài 1
Áp dụng a^ n -b^ n chia hết cho a-b với mọi n thuộc N : a ^n -1+ b ^n+1 chia hết cho a+b với mọi n thuộc N
=> 9^ 2n-1
= máy tính bỏ túi là xong
bài 2
a) Ta có : 942 60 -351 37=(942 4 )15 -351 37=(...6)15 -351 37=(...6)-(...1)=(...5)
vì (...5) có tận cùng là 5
=> (...5) chia hết cho 5
b) Ta có : 99^ 5=(99^ 4 )(99 ^1 )=(...1).(...9)=(....9)
98^ 4=(...6)
97^ 3=97^ 2 .97=(...9)(..7)=(..3)
96 ^2=(....6)
=> (...9)-(...6)+(...3)-(...6)=(...0)
Vây (....0) chia hết cho cả 2 và 5
bài 3
A = 405 n + 2^405 + m2
405^ n tận cùng là 5 2 ^405 = (2^ 4 )101 . 2
= (...6)101 . 2 = (..6).2 = (..2)
m2 tận cùng là 0;1;4;5;6;9
Vậy chữ số tận cùng của A có thể là 7 ; 8 ; 3 ; 2 ; 6
n không có tận cùng là 0
Vậy A không chia hết cho 10
bài 4
a) Chữ số tận cùng của số đuôi 1 lũy thừa luôn là 1
b) Số đuôi 8 thì: ^(2n+1) thì đuôi là 8
^(2n+2) thì đuôi là 4
^(2n+3) thì đuôi là 2
^(2n+4) thì đuôi là 6
218=108.2+2=> Có đuôi là 4
cho A= 2+21+22+...+2200
a) Chứng tỏ rằng : A chia hết cho 15
b) Tìm chữ số tận cùng của A
a) Nhóm 4 số liên tiếp vào rồi chứng minh được
b) A = 2201 - 2 = (...2) - 2 = (...0) có chữ số tận cùng là 0
Cho S = 2+22+23+24+...+2100
a, Chứng tỏ S chia hết cho 3
b, Chứng tỏ S chia hết cho 15
c, S có tận cùng là chữ số nào ?
a) S=(2+22)+22(2+22)+24(2+22)+.....+298(2+22)
S=(2+22)(1+22+24+....+298)
s=6(1+22+24+....+298)
Vi 6 chia het cho 3.Suyra S chia het cho 3
Moi cac ban xem tiep phan sau vao ngay mai
a. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2)+2^3.(1+2)+2^5.(1+2)+....+2^99(1+2)
=2.3+2^3.3+2^5.3+...+2^99.3
=3.(2+2^2+2^5+...+2^99)
=> 3 chia hết cho 3
b. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2+4+8)+2^5.(1+2+4+8)+2^9(1+2+4+8)+...+2^96.(1+2+4+8)
=2.15+2^5.15+2^9.15+...+2^96.15
=> S chia hết cho 15
a) S = ( 2 + 2^2 ) + ( 2^3 + 2^4 ) + ... + ( 2^99 + 2^100 )
S = 2(1 + 2 ) + 2^3(1 + 2 ) + ... + 2^99( 1 + 2 )
S = 2 . 3 + 2^3 . 3 + ... + 2^99 . 3
S = 3( 2 + 2^3 + 2^99 ) chia hết cho 3
ý b, c làm tương tự