Tính nhanh tổng sau:
B=1/3+1/9+1/27+...+1/2187+1/6561
Giúp mik với huhu :((((
Tính nhanh tổng sau:
A=1/3+1/9+1/27+...+1/2187+1/6561
Giúp mình nha
Bài làm:
Ta có: \(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}+\frac{1}{6561}=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}+\frac{1}{3^8}\)
=> \(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}+\frac{1}{3^7}\)
=> \(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)\)
<=> \(2A=1-\frac{1}{3^8}=\frac{3^8-1}{3^8}\)
=> \(A=\frac{3^8-1}{3^8.2}\)
Bài làm :
Ta có :
\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\)
\(\Rightarrow3\times A=\frac{1\times3}{3}+\frac{1\times3}{9}+\frac{1\times3}{27}+...+\frac{1\times3}{6561}\)
\(3\times A=1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}+\frac{1}{2187}\)
\(3\times A=1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}+\frac{1}{2187}+\left(\frac{1}{6561}-\frac{1}{6561}\right)\)
\(3\times A=1+\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}+\frac{1}{2187}+\frac{1}{6561}\right)-\frac{1}{6561}\)
\(3\times A=1+A-\frac{1}{6561}\)
\(\Rightarrow2\times A=1-\frac{1}{6561}\)( Trừ bỏ A ở cả 2 vế )
\(2\times A=\frac{6560}{6561}\)
\(A=\frac{6560}{6561}\div2=\frac{3280}{6561}\)
Vậy A=3280/6561
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Tính nhanh tổng sau:
A= 1/3 + 1/9 + 1/27 + ... + 1/2187 + 1/6561.
\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}+\frac{1}{6561}\)
\(3A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(3A-A=\left[1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\right]-\left[\frac{1}{3}+\frac{1}{9}+...+\frac{1}{6561}\right]\)
\(2A=1-\frac{1}{6561}=\frac{6560}{6561}\)
\(A=\frac{6560}{6561}:2\)
\(A=\frac{3280}{6561}\)
Vậy : ...
tính nhanh 1+3+9+27+81+243+729+2187+6561+19683+59049
ta có :
= ( 1 + 59049 ) + ( 3 + 2187 ) + ( 9 + 6561 ) + ( 27 + 243 ) + ( 81 + 729 )
= 59050 + 2190 + 6570 + 270 + 810
= 59050 + ( 2190 + 810 ) + 6570 + 270
= 59050 + 3000 + 6570 + 270
= 59050 + ( 3000 + 6570 ) + 270
= 59050 + 9570 + 270
= 68620 + 270
= 68890
Kết quả là 68890
Nhớ trả lời cho mình
tính phân số bằng cánh hợp lí
A= 1/3 + 1/9 + 1/27 + ......1/2187 + 1/6561
\(A=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{2187}+\dfrac{1}{6561}\)
\(3A=1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{2187}\)
Lấy 3A - A ta được :
\(2A=1-\dfrac{1}{6561}=\dfrac{6560}{6561}\Leftrightarrow A=\dfrac{6560}{6561}:2\)
\(\Leftrightarrow A=\dfrac{6560}{6561}.\dfrac{1}{2}=\dfrac{3280}{6561}\)
a = 1/3 + 1/9 + 1/27 + ... + 1/2187 + 1/6561 = ?
\(3A=1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{2187}\)
\(3A-A=\left(1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{2187}\right)-\left(\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{6561}\right)\)
\(2A=\dfrac{6560}{6561}\)
\(A=\dfrac{3280}{6561}\)
1+3+9+27+....+2187+6561
1+3+9+27+....+2187+6561
đặt A = 1+3+9+27+....+2187+6561
=>A = 30 + 31 + 32 + 33 + .. . +37 + 38
3A = 31 + 32 + 33 + ... + 38 + 39
3A - A = (31 + 32 + 33 + ... + 38 + 39)-(30 + 31 + 32 + 33 + .. . +37 + 38 )
2A = 39 - 1
A=\(\frac{3^9-1}{2}=\frac{19682}{2}=9841\)
Câu hỏi của nguyenphucthang - Toán lớp 4 - Học toán với OnlineMath
Tính nhanh tổng sau
A=1/6+1/12+1/20+...1/9900
B=1/3+1/9+1/27+1/81+...=1/2187
Tính hợp lý tổng sau
S=1+1/3+1/9+1/27+....+1/2187
\(S=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(3S=3+1+\frac{1}{3}+...+\frac{1}{3^6}\)
\(3S-S=\left(3+1+\frac{1}{3}+...+\frac{1}{3^6}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)\)
\(2S=3-\frac{1}{3^7}\)
\(S=\frac{3-\frac{1}{3^7}}{2}\)
S= 1+ \(\frac{1}{3}\)+ \(\frac{1}{9}\)+...+ \(\frac{1}{729}\)+ \(\frac{1}{2187}\).
=> S= 1+ \(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+...+ \(\frac{1}{3^6}\)+ \(\frac{1}{3^7}\).
=>3S= 3+ 1+ \(\frac{1}{3}\)+...+ \(\frac{1}{3^5}\)+ \(\frac{1}{3^6}\).
=> 3S- S=( 3+ 1+ \(\frac{1}{3}\)+...+ \(\frac{1}{3^5}\)+ \(\frac{1}{3^6}\))-( 1+ \(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+...+ \(\frac{1}{3^6}\)+ \(\frac{1}{3^7}\)).
=> 2S= 3- \(\frac{1}{3^7}\).
=> 2S= 3- \(\frac{1}{2187}\).
=> 2S= \(\frac{6560}{2187}\).
=> S= \(\frac{6560}{2187}\): 2.
=> S= \(\frac{3280}{2187}\).
Vậy S= \(\frac{3280}{2187}\).