Những câu hỏi liên quan
PT
Xem chi tiết
LT
Xem chi tiết
HH
Xem chi tiết
TQ
Xem chi tiết
TP
Xem chi tiết
NT
Xem chi tiết
BQ
Xem chi tiết
DD
Xem chi tiết
ML
9 tháng 7 2015 lúc 10:16

Đặt cái căn dưới mẫu là a, suy ra căn trên tử là \(\sqrt{3+a}\). Nếu đề chính xác thì biến đổi tương đương nhẹ nhàng là ra :))

Bình luận (0)
DD
9 tháng 7 2015 lúc 15:30

vui long giai chi tiet
minh hong hiu

Bình luận (0)
H24
6 tháng 1 2019 lúc 19:26

Ta c/m \(\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>1\) (2010 dấu căn)  (1)

Thật vậy: \(VT>\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{1}}}}\)

\(=\sqrt{3+\sqrt{3+\sqrt{3+1}}}=\sqrt{3+\sqrt{3+2}}=\sqrt{3+\sqrt{5}}>2\)

Vậy (1) đúng

Đặt \(\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a\left(a>2\right)\) (có 2010 dấu căn)

Suy ra \(3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}=a^2\) (có 2009 dấu căn)

Suy ra \(\sqrt{3+\sqrt{3+...+\sqrt{3}}}=a^2-3\)

Thay vào,ta có: \(VT=\frac{3-a}{6+3-a^2}=\frac{3-a}{9-a^2}=\frac{3-a}{\left(3-a\right)\left(3+a\right)}=\frac{1}{3+a}\)

Mà a > 2 nên \(VT=\frac{1}{3+a}< \frac{1}{3+2}=\frac{1}{5}< \frac{1}{4}^{\left(đpcm\right)}\) (không chắc nha!)

Bình luận (0)
NN
Xem chi tiết