Tìm số dư khi chia 2\(^{3n+2}\) +2015 cho 7 với mọi n thuộc N
1 CMR
a) (n+20152016)+(n+20152016) chia hết cho 2 với mọi n thuộc N
b) n2+5n+7 không chia hết cho 2 với mọi n thuộc N
c)n(n+1)+1 không chia hết cho 5 với mọi n thuộc N
d)n2+n+2 không chia hết cho 15 với mọi n thuộc N
e)n2+n+2 không chia hết cho 3 với mọi n thuộc N
f)n2+n+1 không chia hết cho 5 với mọi n thuộc N
2 CMR
a)n2+11n+39 không chia hết cho 49 với mioj n thuộc N
b)n2-n+10 không chia hết cho 169 với mọi n thuộc N
c)n2+3n+5 không chia hết cho 121 với mọi n thuộc N
d)4n2+8n-6 không chia hết cho 25 với mọi n thuộc N
e)n2-5n-49 không chia hết cho 169 với mọi n thuộc N
Bài 5:Tìm số tự nhiên a nhỏ nhất sao cho a chia 5 dư 3,chia 7 dư 4
Bài 6:Một số chia 7 dư 3,chia 17 dư 12,chia 23 dư 7.Hỏi số đó chia cho 2737 dư bao nhiêu?
Bài 7:Tìm số tự nhiên n biết khi chia n cho 147 và 193 có số dư lần lượt là 17 và 11.
Bài 11:a,Tìm các số nguyên x sao cho (4x-3) chia hết cho (x-2)
b,Tìm n biết 5n+7 chia hết cho 3n+2
c,Tìm n thuộc Z,biết 3n+2 chia hết cho n-1
HELP ME!!!!!!!!!!!!!!!!!!!giải rõ ra nhé
lì xì tết thì phải vừa nhiều vừa khó chứ
duyệt đi
Bạn ơi, bạn hỏi từng câu thôi tớ mói trả lời đc chứ
trả lời câu nào cũng đc,đọc đi,giúp với
Tìm số dư của :
a,1995^n+1996^n+1997^n với n thuộc N khi chia cho 2
b,2014^2015-2013^2014 khi chia cho 10
Bài 1: Tìm số dư của:
a,1995^n+1996^n+1997^n với n thuộc N khi chia cho 2
b,2014^2015 - 2013^2014 khi chia cho 10
Bài 1: Tìm n thuộc N để
a) 3n+7 chia hết cho n
b) n+10 chia hết cho n-1
c) 3n+5 chia hết Cho n-2
Bai 2 chứng minh rằng (5n+7).(4n+6) chia hết 2 với mọi n thuộc N
\(^{_{ }\in}\)
với mọi số n .Tìm số dư của 101n+42015 khi chia cho 100
biết rằng khi chia 3n cho 7 thi được số dư là 5.Tìm số dư khi chia n cho 7
các thánh ơi giúp em với, em cho
dư 4
Nếu làm trắc nghiệm thì thế 4 vào
1.Cho E=5+5 mũ 2+5 mũ 3+....+5 mũ 100. Tìm số dư khi chia E cho 6
2. Chứng tỏ rằng với mọi số tự nhiên n thì n(n+2)(n+7): 3( chia hết cho 3)
3. Tìm số nguyên tố nhỏ hơn 200 , biết rằng khi chia số đó cho 60 thì số dư là hợp số
Bài 1:
Giải :
Ta có: \(E=5+5^2+5^3+5^4+...+5^{97}+5^{98}+5^{99}+5^{100}\) \(\Leftrightarrow E=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{97}+5^{98}\right)+\left(5^{99}+5^{100}\right)\)
\(\Leftrightarrow E=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{97}.\left(1+5\right)+5^{99}.\left(1+5\right)\)
\(\Leftrightarrow E=5.6+5^3.6+...+5^{97}.6+5^{99}.6\)
\(\Leftrightarrow E=6.\left(5+5^3+...+5^{97}+5^{99}\right)\)
\(\Rightarrow E⋮6\)
Do \(E⋮6\)nên \(E\div6\)dư 0
Vậy \(E\div6\)có số dư bằng \(0\)
Bài 2:
Giải :
Ta có: \(n.\left(n+2\right).\left(n+7\right)\)
\(=\left(n^2+2n\right).\left(n+7\right)\)
\(=n^3+2n^2+7n^2+14n\)
\(=n^3+9n^2+14n\)
\(=n.\left(n^2+9n+14\right)\)
cho c=5+5 mũ 2+ 5 mũ 3+....+5 mũ 20 chứng minh C chia hết cho 6, 13