Những câu hỏi liên quan
NK
Xem chi tiết
XO
12 tháng 11 2019 lúc 21:27

a) Ta có : \(A=\left|x+1\right|+\left|y-2\right|\)

\(\ge\left|x+1+y-2\right|\)

\(=\left|x+y-1\right|=\left|5-1\right|=\left|4\right|=4\)

Dấu "=" xảy ra <=> (x + 1)(y - 2) \(\ge\)0

Vậy Min A = 4 <=>  (x + 1)(y - 2) \(\ge\)0

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
NL
Xem chi tiết
DL
Xem chi tiết
TL
1 tháng 8 2021 lúc 18:50

`A=x^2-4x+y^2-y+5`

`=(x^2-4x+4)+(y^2-y+1/4)+3/4`

`=(x-2)^2+(y-1/2)^2+3/4`

`=>A_(min) = 3/4 <=> {(x=2),(y=-1/2):}`

Bình luận (3)
TV
Xem chi tiết
YS
Xem chi tiết
KB
11 tháng 5 2022 lúc 22:49

a.\(-1\le cosx\le1\Rightarrow-4\le y=3cosx-1\le2\)

b.-1 \(\le sinx\le1\)\(\Rightarrow3\le y=5+2sinx\le7\)  

c.\(\sqrt{3-1}\le\sqrt{3+cos2x}\le\sqrt{3+1}\Rightarrow\sqrt{2}\le y\le2\)

d.\(y=\sqrt{5sinx-1}+2\le\sqrt{5.1-1}+2=4\)

\(y=\sqrt{5sinx-1}+2\ge2\) . " = " \(\Leftrightarrow sinx=\dfrac{1}{5}\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(\dfrac{1}{5}\right)+2k\pi\\x=\pi-arcsin\left(\dfrac{1}{5}\right)+2k\pi\end{matrix}\right.\)  ( k thuộc Z ) 

Bình luận (0)
NV
Xem chi tiết
LD
9 tháng 2 2021 lúc 9:05

x,y dương chứ nhỉ :))

Áp dụng bất đẳng thức AM-GM ta có :

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}\cdot\frac{y^2}{x^2}}=2\)

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\)

=> \(P=\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\ge2-3\cdot2+5=1\)

Đẳng thức xảy ra khi x = y

Vậy MinP = 1

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
NT
19 tháng 8 2023 lúc 16:18

\(C=\dfrac{5}{3-\left(4x+1\right)^2}\)

Điều kiện xác định khi 

\(3-\left(4x+1\right)^2\ne0\Leftrightarrow\left[{}\begin{matrix}4x+1\ne\sqrt[]{3}\\4x+1\ne-\sqrt[]{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{\sqrt[]{3}-1}{4}\\x\ne\dfrac{-\sqrt[]{3}-1}{4}\end{matrix}\right.\)

Ta có :

\(\left(4x+1\right)^2\ge0,\forall x\)

\(\Leftrightarrow3-\left(4x+1\right)^2\le3\)

\(\Leftrightarrow C=\dfrac{5}{3-\left(4x+1\right)^2}\ge\dfrac{5}{3}\)

Vậy \(GTNN\left(C\right)=\dfrac{5}{3}\left(tạix=-\dfrac{1}{4}\right)\)

Bình luận (0)
NT
19 tháng 8 2023 lúc 16:10

\(B=\left(2x\right)^2+2\left(y-1\right)^2-5\)

vì \(\left\{{}\begin{matrix}\left(2x\right)^2\ge0,\forall x\\2\left(y-1\right)^2\ge0,\forall y\end{matrix}\right.\)

\(\Rightarrow B=\left(2x\right)^2+2\left(y-1\right)^2-5\ge-5\)

Dấu "=" xảy tại khi

\(\left\{{}\begin{matrix}2x=0\\2\left(y-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)

Vậy \(GTNN\left(B\right)=-5\left(tạix=0;y=1\right)\)

Bình luận (0)