cho đa thức P(x)=\(x^{2012}-2011x^{2011}-2011x^{2010}-....-2011x^2-2011x+1\)
Tính P(2012)
cho đa thức p(x)=x^2012-2011x^2011-2011x^2010-........-2011x^2x+1.tinh p(2012)
giải hộ mk vs ,mai mk hok rùi
1.Cho đa thức f(x)=\(x^{25}-2011x^{24}+2011^{23}-2011x^{22}+...+2011x-1\)
Tính giá trị của đa thức tại x=2010
2. Tìm hai số dương biết tổng, hiệu và tích của chúng tỉ lệ nghịch với 30;120;16
3. CM: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)với mọi x;y thuộc Q
Với x = 2010 => 2011 = x+1
Khi đó: f(x) = x^25 - (x+1)x^24+(x+1)x^23 - (x+1)x^22 + ... + (x+1)x - 1
= x^25 - x^25 - x^24 + x^24 - x^23 - x^23 - x^22 +...+ x^2 + x - 1
= x - 1
= 2010 - 1 (vì x = 2010)
= 1999
Vậy f(2010) = 1999 tại x = 2010
ủng hộ mk nha!!!
1 Tìm y Biết < 3 x y - 0,8 > : y + 14,5 = 15
2 Tính A = 2012 x 14 + 1997 + 2010 x 2011 / 2011 x 5 +2011x 1008+1012 x2011
1 (3y - 0,8 ) : y + 14,5 = 15
( 3y - 0,8 ) : y = 0,5
3y : y - 0,8 : y = 0,5
3 - 0,8 : y = 0,5
0,8 : y = 2,5
y = 0,8 : 2,5
y = 0,32
Ta có :
Tử số = 2012 x 14 + 1997 + 2010 x 2011
= ( 2011 + 1 ) x 14 + 1997 + 2010 x 2011
= 2011 x 14 + 1 x 14 + 1997 + 2010 x 2011
= 2011 x 14 + 14 + 1997 + 2010 x 2011
= ( 2011 x 14 ) + ( 14 + 1997 ) + ( 2010 x 2011 )
= 2011 x 14 + 2011 + 2010 x 2011
= 2011 x ( 14 + 1 + 2010 )
= 2011 x 2025
Mẫu số = 2011 x 5 + 2011 x 1008 + 1012 x 2011
= 2011 x ( 5 + 1008 + 1012 )
= 2011 x 2025
=> \(A=\frac{2011\times2025}{2011\times2025}=1\)
phân tích đa thức thành nhân tử x^4+2012x^2+2011x+2012
x4+2012x2+2011x+2012
=(x4-x)+(2012x2+2012x+2012)
=x(x3-1)+2012(x2+x+1)
=x(x-1) (x2+x+1) + 2012 (x2+x+1)
=(x2+x+1) [x(x-1)+2012]
=(x2+x+1) (x2-x+2012)
\(x^4+2012x^2+2011x+2012\)
\(=x^4-x+2012x^2+2012x+2012\)
\(=x.\left(x-1\right)\left(x^2+x+1\right)+2012.\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2012\right)\)
C=2011x(2011-1)x(2011-2)x...x(2011-k) với k thuộc N* và C có 2012 thừa số. Tính C
Cho \(f\left(x\right)=x^8-2011x^7+2011x^6-2011x^5+...+2011x^2-2011x+1975\)
Tính \(f\left(2010\right)\)
x=2010⇒x+1=2011
Thay x+1=2011 vào f(2010) là được.
Giải phương trình
B = \(\frac{x^2+2011x-2}{2010}+\frac{x^2+2011x-4}{2008}=\frac{x^2+2011x-6}{2006}+\frac{x^2+2011x-2}{2004}8\)
Tìm x biết:
a) x + 2x + 3x + 4x + ... + 2011x = 2012 . 2013
b)\(\dfrac{x-1}{2011}+\dfrac{x-2}{2010}-\dfrac{x-3}{2009}=\dfrac{x-44}{2008}\)
\(x+2x+3x+...+2011x=2012.1013\)
\(\dfrac{2011\left(2011+1\right)}{2}x=2012.2013\)
\(x=2012.2013.\dfrac{2}{2011.2012}\)
\(x=\dfrac{4026}{2011}\)
Phân tích các đa thức sau thành nhân tử
1) (x^2+3x+1)^2-1
2) x^4+2012x^2+2011x+2012
1) \(\left(x^2+3x+1\right)^2-1=\left(x^2+3x\right)\left(x^2+3x+2\right)=x\left(x+3\right)\left[\left(x^2+2x\right)+\left(x+2\right)\right]\)
\(=x\left(x+3\right)\left[x\left(x+2\right)+\left(x+2\right)\right]=x\left(x+3\right)\left(x+1\right)\left(x+2\right)\)
2) \(x^4+2012x^2+2011x+2012\)
\(=\left(x^4-x\right)+\left(2012x^2+2012x+2012\right)\)
\(=x\left(x^3-1\right)+2012\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2012\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2012\right]\)
\(=\left(x^2+x+1\right)\left(x^2-x+2012\right)\)