rút gọn biểu thức : M = \(\frac{x}{\sqrt{x}-1}+\frac{2x-\sqrt{x}}{\sqrt{x}-x}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Rút gọn biểu thức: \(M=\left(\frac{1}{2}-\frac{1}{2x}\right)\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
ĐK:x>1
M=\(\frac{x-1}{2x}\) .\(\frac{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{x-1}\)
=\(\frac{x-1}{2x}\).\(\frac{x\sqrt{x}-x-x+\sqrt{x}-x\sqrt{x}-x-x-\sqrt{x}}{x-1}\)=\(\frac{x-1}{2x}\).\(\frac{-4x}{x-1}\)=-2
Vậy M=-2
\(\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\)Rút gọn biểu thức
Rút gọn biểu thức
\(P=\left(\frac{1}{1-\sqrt{x}}-\frac{1}{\sqrt{x}}\right):\left(\frac{2x+\sqrt{x}-1}{\sqrt{x}-x\sqrt{x}}+\frac{2x\sqrt{x}+x-\sqrt{x}}{\sqrt{x}+x^2}\right)\)
Rút gọn biểu thức \(P=\left(\frac{\sqrt{x}+1}{\sqrt{2x}+1}+\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x}+1}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
\(y=\left(\frac{1}{1-\sqrt{x}}-\frac{1}{\sqrt{x}}\right):\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\).Rút gọn biểu thức
Cho bt
M=\(\left(\frac{1}{1-\sqrt{x}}-\frac{1}{\sqrt{x}}\right):\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)
a) Rút gọn biểu thức M
b)Tính giá trị M với x = \(7-4\sqrt{3}\)
rút gọn biểu thức : \(\frac{x^2-\sqrt{x}}{x+\sqrt{x}+x}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\cdot\left(x-1\right)}{\sqrt{x}-1}\)
Cho P=\(\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}+1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\)
Rút gọn biểu thức P
\(P=\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}+1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\)
\(P=\frac{2x+2}{\sqrt{x}}+\frac{\sqrt{x^3}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x^3}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(P=\frac{2x+2}{\sqrt{x}}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)\(-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(P=\frac{2x+2}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\)
\(P=\frac{2x+2-x+\sqrt{x}-1-x+\sqrt{x}-1}{\sqrt{x}}\)
\(P=\frac{2\sqrt{x}}{\sqrt{x}}\)
\(P=2\)
vậy \(P=2\)
Giải chi tiết hộ mk:
Rút gọn biểu thức:
\(M=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}\right)\cdot\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(M=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}\right).\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(\frac{3x\sqrt{x}+2x}{2x\sqrt{x}+x+\sqrt{x}-1}\)