Chi P(x)= x10 - 2010.x9 + 2010x8 -2010x^7+...+2010x^2-2010x-1
Tính giá trị P(x) tại x=2009
cho x=2011. Tính giá trị của A
A=\(x^{2011}-2010x^{2010}-2010x^{2009}-...-2010x+1\)
Ta có: x = 2011 \(\Rightarrow\) 2010 = x - 1
\(A=x^{2011}-2010x^{2010}-2010x^{2009}-...-2010x+1\)
\(=x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)
\(=x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)
\(=x^{2011}-x^{2011}+x^{2010}-x^{2010}+x^{2009}-...-x^2+x+1\)
\(=x+1\)
\(=2011+1\)
\(=2012.\)
x=2011
=> 2010= x-1
A = x^2011- (x-1) x^2010- (x-1).x^2009-.....- (x-1).x+1
= x^2011-x^2011+x^2010- x^2010+x^2009..x^2.-x^2+x+1
= x+1
=(x-1)+2= 2010+2=2012
Tìm x:
x ( x - 2009 ) - 2010x + 2009 x 2010 = 0
\(x.\left(x-2009\right)-2010x+2009.2010=0\)
\(x.\left(x-2009\right)-2010\left(x-2009\right)=0\)
\(\left(x-2009\right)\left(x-2010\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2009=0\\x-2010=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2009\\x=2010\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=2009\\x=2010\end{cases}}\)
Tính 2010x 2010 - 2009x 2009 + 2008x 2008 - ...+2 x 2 - 1 x 1
tim x biet x(x-2005)-2010x+2009+2010
tim x
x(x-2015)-2010x+2009*2010=0
tính giá trị của biểu thức
A=\(x^{15}-2010x^{14}+2010x^{13}-2010x^{12}+2010x^{11}-...+2010x-2010\)
1)Tính GT biểu thức 3x4-5x3y+6x2-10xy+2 với x,y thỏa mãn 3x-5y=0
2)Tính x5-2010x4+ 2010x3 -2010x2+2010x-2020 với x = 2009
1)3x4-5x3y+6x2-10xy+2
=(3x4-5x3y)+(6x2-10xy)+2
=x3(3x-5y)+2x(3x-5y)+2
=x3.0+2x.0+2
=0+0+2
=2
2) x5-2010x4+2010x3-2010x2+2010x-2020
=x5-(2009+1)x4+(2009+1)x3-(2009+1)x2+(2009+1)x-2009-11
=x5-(x+1)x4+(x+1)x3-(x+1)x2+(x+1)x-x-11
=x5-x5-x4+x4+x3-x3-x2+x2+x-x-11
=-11
2, Với x= 2009 => 2010=x+1
=> \(x^5-2010\text{x}^4+2010\text{x}^3-2010\text{x}^2+2010\text{x}-2020=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-2020\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-2020\)
\(=x-2020\)
\(=2009-2020\\ =-11\)
Giải phương trình sau:
\(\frac{2010x+2010}{x^2+x+1}-\frac{2010x-2010}{x^2-x+1}=\frac{2011}{x.x^6+x^2+1}\)
Giải phương trình :
\(\frac{2010x+2010}{x^2+x+1}+\frac{2010x-2010}{x^2-x+1}=\frac{2011}{x.\left(x^4+x^2+1\right)}\)
-Ta thấy \(x^4+x^2+1=x^4-x+x^2+x+1=\left(x^2-x\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
Vậy PT sẽ thành
\(\frac{2010x\left(x^3+1\right)}{x\left(x^4+x^2+1\right)}+\frac{2010x\left(x^3-1\right)}{x\left(x^4+x^2+1\right)}=\frac{2011}{x\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow2.2010x^4=2011\Leftrightarrow x=...\)
Cho x, y, z thỏa mãn xyz=2010. Khi đó, giá trị của biểu thức:
A=\(\frac{2010x}{xy+2010x+2010}+\frac{y}{yz+y+2010}+\frac{z}{xz+z+1}=?\)
Bạn thay y xyz=2010 vào A ta được
A= xyz*x/xy+xyz*x+xyz + y/yz+y+xyz + z/xz+z+1
suy ra A=x^2yz/xy(1+xz+z) + y/y(z+1+xz) + z/xz+x+1
A= xz/1+xz+z + 1/z+1+xz + x/xz+z+1 = xz+1+x/xz+1+x =1
Vay A=1