Evaluate (a+b)2 , given a-b=8 and ab=10 .
Answer:
Given and . Evaluate .
Answer:
Evaluate , given and .
Answer:
giúp mk vs
a-b=5
<=>(a-b)2=a2-2ab+b2 =25
<=>a2+b2-2ab =33
<=>a2+b2 = 33 (vì 2ab=8)
Ta có:
a3-b3= (a-b)(a2+ab+b2)
=5.(33+4) =185
Evaluate , given and .
Ta có: \(a+b=8\)
\(\Rightarrow\left(a+b\right)^2=8^2\)
\(\Rightarrow a^2+2ab+b^2=64\)
\(\Rightarrow a^2+2.10+b^2=64\)
\(\Rightarrow a^2+20+b^2=64\)
\(\Rightarrow a^2+b^2=44\)
\(\left(a-b\right)^2=a^2-2ab+b^2\)
\(=\left(a^2+b^2\right)-2.10\)
\(=44-20\)
\(=24\)
Vậy \(\left(a-b\right)^2=24\)
(a-b)2 = a2-2ab+b2
= a2+2ab+b2 -4ab
=(a+b)2- 4ab
=82 - 4.10
=64-40
=24
thanks
Evaluate the expression at
Fill in the blank: ............
Fill in the blank: Fill in the blank:Evaluate the expression at
x3 + 12x + 48x + 64
= (x + 4)2
= (- 4 + 4)2
= 02
= 0
Fill in the blank: ............
x3 - a = (x - 2)(x2 + 2x + 4)
x3 - a = x3 - 8
a = 8
Fill in the blank: (x - 1)3 = x3 - 3x2 + 3x - 1 Fill in the blank: (x + 1)3 = x3 + 3x2 + 3x + 1a + b = 8
(a + b)2 = 82
a2 + b2 + 2ab = 64
a2 + b2 + 2 . 10 = 64
a2 + b2 + 20 = 64
a2 + b2 = 64 - 20
a2 + b2 = 44
(a - b)2
= a2 - 2ab + b2
= 44 - 2 . 10
= 44 - 20
= 24
Given .
Evaluate A at .
Answer: A
A = (x - 5)(x2 + 5x + 25) - x2(x + 3) + 3x2
= x3 - 125 - x3 - 3x2 + 3x2
= - 125
Given .
Evaluate A at .
Answer: A
Given the isosceles triangle ABC (AB=AC) with \(A=108^o\). Draw the bisector AD and BE of angles A and B respectively. Given BE = 10cm. Evaluate AD.
Given the isosceles triangle ABC (AB=AC) with . Draw the bisector AD and BE of angles A and B respectively. Given BE = 10cm. Evaluate AD.
Given a trapezoid ABCD with base AB=4cm , CD=6cm , and góc C + góc D = 90 độ . Let M, N be respectively the midpoints of the segments AB and CD . Evaluate MN.
Answer: MN= ? cm
chỗ tiếng việt chỗ tiếng anh là sao
Given the quadrilateral ABCD with two diagonals perpendicular and AB = 8cm, BC = 7cm, AD = 4cm. Evaluate CD.
Answer: CD = cm.
Given that a^2-b^2=1. Evaluate: A=2(a^6-b^6)-3(a^4-b^4)
Given that\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x+a}{x+b}\) .Evaluate \(a+b\)
\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x^2\left(x+1\right)-4\left(x+1\right)}{x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)}\)
\(=\frac{\left(x+1\right)\left(x^2-4\right)}{\left(x+1\right)\left(x^2+7x+10\right)}=\frac{\left(x+2\right)\left(x-2\right)}{x\left(x+2\right)+5\left(x+2\right)}\)
\(=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x+5\right)}=\frac{x-2}{x+5}\Rightarrow a=-2;b=5\)
\(\Rightarrow\)\(a+b=-2+5=3\)