chứng minh a=(1/4)+(1/16)+(1/36)+(1/64)+(1/100)+(1/144)+(1/196)+(1/256)+(1/324)<1/2
Chứng minh rằng: A = 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324<1/2
A = 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324
= 1/4.(1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2+1/9^2) <1/4.(1+1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9)
= 1/4.(1+1-1/9)
= 1/4.17/9 = 17/36<18/36 = 1/2
=> A = 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324<1/2
Cho
A= 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324+1/400. Chứng minh A < 1/20
\(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{324}+\frac{1}{400}\)
\(A=\frac{1}{4}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}+\frac{1}{10^2}\right)\)
\(< \frac{1}{4}.\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}+\frac{1}{9.10}\right)=\frac{1}{4}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{19}{40}< \frac{20}{40}=\frac{1}{2}\)
đề là < 1/2 nhé
Chứng minh rằng:A=(1/4)+(1/16)+(1/64)+(1/100)+(1/144)+(1/196)+(1/256)+(1/324)<1/2
hình như phân số cuối phải là 1/324
nếu là 1/324 thì tớ giải nè:
A = 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324
= 1/4.(1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2+1/9^2) <1/4.(1+1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9)
= 1/4.(1+1-1/9)
= 1/4.17/9 = 17/36<18/36 = 1/2
=> A = 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324<1/2
A<1/1*2+1/3*4+........+1/17*18
A<1-1/2+1/3-1/4+.......+1/17-1/18
A<(1+1/3+.....+1/17)-(1/2+1/4+......+1/18)
A<(1+1/2+1/3+......+1/18)-(1/2+1/4+.....+1/18)-(1/2+1/4+.......+1/18)
A<1-1/18-(1/2+1/3+1/4+......+1/17)
A<17/18-1/2-(1/3+1/4+......+1/17)
A<4/9-(1/3+1/4+.......+1/17)<1/2=4/8
Vậy a<1/2(đpcm)--------------------------Mình làm hơi dài nhé----------------------------------
Chứng mình rằng:A=1/2+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324<1/2
Chứng minh rằng A = 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1324 < 1/2
hình như phân số cuối phải là 1/324
nếu là 1/324 thì tớ giải nè:
A = 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324
= 1/4.(1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2+1/9^2) <1/4.(1+1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9)
= 1/4.(1+1-1/9)
= 1/4.17/9 = 17/36<18/36 = 1/2
=> A = 1/4+1/16+1/36+1/64+1/100+1/144+1/196+1/256+1/324<1/2
cho dung na
nha bai tren sai day yhemh moi dung ne
A = 1/4+1/16+1/36+1/64+1/100+1/44+1/196+1/256+1/324
Chứng minh A<1/2
(làm chi tiết giùm mình nha❤)
bạn giải dùm mình bài này nhé Tìm x biết: 2+2+22 +23+24+...+22014=2x. Ai giúp mình giải bài này với
chứng minh rằng a 1/4 +1/16+1/36+1/64+1/100+1/144 +1/196+......+1/10000 <1/2
Cho A=1/4+1/16+1/36+1/64+1/100+1/144+1/196. Chứng minh rằng A < 1/2
dpcm là điều phải chứng minh nha
Ta có : \(\frac{1}{4}=\frac{1}{2}-\frac{1}{4}\)
\(\frac{1}{16}< \frac{1}{4}-\frac{4}{8}\)
\(\frac{1}{36}< \frac{1}{8}-\frac{1}{12}\)
\(\frac{1}{64}< \frac{1}{12}-\frac{1}{16}\)
\(\frac{1}{100}< \frac{1}{16}-\frac{1}{20}\)
\(\frac{1}{144}< \frac{1}{20}-\frac{1}{24}\)
\(\frac{1}{196}< \frac{1}{24}-\frac{1}{28}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{28}\)
\(=\frac{1}{2}-\frac{1}{28}< \frac{1}{2}\)
Vậy A<1/12
chứng minh rằng
1/4+1/16+1/36+1/64+1/100+1/144+1/196<1/2
khó hiểu lên thông cảm
P = 1/4 + 1/16 + 1/36 + .. + 1/196 = 1/2² + 1/4² + 1/6² +...+ 1/12² + 1/14²
xét tổng quát với số nguyên dương k ta có:
(2k-1)(2k+1) = 4k² - 1 < 4k² = (2k)² => 1/(2k)² < 1/(2k-1)(2k+1)
=> 2/(2k)² < 2 /(2k-1)(2k+1) = 1/(2k-1) - 1/(2k+1) (*)
ad (*) cho k từ 1 đến 7
2/2² < 1/1 - 1/3
2/4² < 1/3 - 1/5
...
2/12² < 1/11 - 1/13
2/14² < 1/13 - 1/15
+ + cộng lại + +
2/2² + 2/4² +...+ 2/14² < 1/1 - 1/15 < 1
=> 2(1/2² + 1/4² +..+ 1/14²) < 1 => P < 1/2 (đpcm)