Những câu hỏi liên quan
H24
Xem chi tiết
KA
15 tháng 5 2017 lúc 8:16

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2016.2017}\)

\(A=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+......+\left(\frac{1}{2016}-\frac{1}{2017}\right)\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2016}-\frac{1}{2017}\)

\(A=\frac{1}{1}-\frac{1}{2017}\)

\(A=\frac{2016}{2017}\)

Bình luận (0)
TS
15 tháng 5 2017 lúc 8:18

A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2016.2017}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2016}-\frac{1}{2017}\)

\(\Rightarrow A=1-\frac{1}{2017}\)

\(\Rightarrow A=\frac{2016}{2017}\)

Bình luận (0)
SL
21 tháng 1 2018 lúc 12:57

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2015.2016}+\frac{1}{2016.2017}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2016}-\frac{1}{2017}\)

\(\Rightarrow A=1-\frac{1}{2017}\)

\(\Rightarrow A=\frac{2016}{2017}\)

Bình luận (0)
NV
Xem chi tiết
FS
10 tháng 5 2017 lúc 10:30

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2016\cdot2017}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(=1-\frac{1}{2017}=\frac{2016}{2017}\)

Bình luận (0)
NT
Xem chi tiết
B5
7 tháng 4 2017 lúc 20:26

Lâm đi là: 35 phút +2 giờ 20phút =2 giờ 55 phút

Bình luận (0)
TN
7 tháng 4 2017 lúc 20:30

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(A=1-\frac{1}{2017}\)

\(A=\frac{2016}{2017}\)

Bình luận (0)
TN
7 tháng 4 2017 lúc 20:41

\(B=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2016.2018}\)

\(2B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2016.2018}\)

\(2B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2016}-\frac{1}{2018}\)

\(2B=1-\frac{1}{2018}\)

\(B=\frac{2017}{\frac{2018}{2}}\)

Bình luận (0)
H24
Xem chi tiết
H24
8 tháng 3 2017 lúc 10:52

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2004.2005}\)

\(A=\frac{1}{1.2}=1-\frac{1}{2}\)

\(A=\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2003}-\frac{1}{2004}\)

\(A=1-\frac{1}{2004}\)

\(A=\frac{2003}{2004}\)

Ủng hộ tk Đúng nha mọi người !!! ^^ 

Bình luận (0)
BH
8 tháng 3 2017 lúc 10:52

\(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)\(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)\(\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\);...; \(\frac{1}{2004.2005}=\frac{1}{2004}-\frac{1}{2005}\)

=> A=\(\frac{1}{1}-\frac{1}{2005}=\frac{2004}{2005}\)

Bình luận (0)
H24
8 tháng 3 2017 lúc 10:52

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2004.2005}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2004}-\frac{1}{2005}\)

\(=1-\frac{1}{2005}\)

\(=\frac{2004}{2005}\)

Bình luận (0)
VC
Xem chi tiết
DN
19 tháng 12 2016 lúc 10:42

Ta có \(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2016.2017}\)

\(\Rightarrow A=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)\)

\(\Rightarrow A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2016}+\frac{1}{2017}\right)\)

\(\Rightarrow A=2\left(1-\frac{1}{2017}\right)\)

\(\Rightarrow A=2\left(\frac{2016}{2017}\right)\)

\(\Rightarrow A=\frac{4032}{2017}\)

Bình luận (0)
PM
19 tháng 12 2016 lúc 10:29

Ta có:\(\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+....+\frac{2}{2016\cdot2017}\)

\(=\frac{2}{1}-\frac{2}{2}+\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+....+\frac{2}{2016}-\frac{2}{2017}\)

\(=\frac{2}{1}-\frac{2}{2017}=2-\frac{2}{2017}=\frac{4034}{2017}-\frac{2}{2017}=\frac{4032}{2017}\)

Bình luận (0)
HN
19 tháng 12 2016 lúc 11:43

\(A=\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+...+\frac{2}{2016\cdot2017}\)

\(\frac{A}{2}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2016\cdot2017}\)

\(\frac{A}{2}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(\frac{A}{2}=1-\frac{1}{2017}=\frac{2016}{2017}\)

\(A=\frac{2016}{2017}\cdot2=\frac{4032}{2017}\)

Bình luận (0)
NT
Xem chi tiết
BH
16 tháng 4 2017 lúc 13:32

mình đã thi học kì bài này và mình được 10, nhưng đã 1 năm trôi qua nên mình quên mất tiêu rùi.

rất tiếc, chúc bạn may mắn

Bình luận (0)
Xem chi tiết
KS
4 tháng 8 2018 lúc 13:36

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}+1\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}+1\)

\(=1-\frac{1}{1000}+1\)

\(=\frac{1000}{1000}-\frac{1}{1000}+\frac{1000}{1000}\)

\(=\frac{1999}{1000}\)

Tham khảo nhé~

Bình luận (0)
H24
4 tháng 8 2018 lúc 13:37

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}+1\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}+1\)

\(1-\frac{1}{1000}+1\)

\(\frac{1999}{1000}\)

Bình luận (0)
H24
4 tháng 8 2018 lúc 13:50

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}+1\)

\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}\right)+1\)

\(=\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{999}-\frac{1}{1000}\right)+1\)

\(=\left(1-\frac{1}{1000}\right)+1\)

\(=\frac{999}{1000}+1\)

\(=\frac{1999}{1000}\)

Bình luận (0)
TM
Xem chi tiết
ND
20 tháng 2 2017 lúc 21:29

\(=\frac{2013}{2014}\)

Bình luận (0)
TN
20 tháng 2 2017 lúc 21:40

\(\frac{2013}{2014}\)

Bình luận (0)
Xem chi tiết
PN
4 tháng 5 2019 lúc 19:14

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=\frac{1}{1}-\frac{1}{50}\)

\(A=\frac{50-1}{50}=\frac{49}{50}\)

Bình luận (0)
NH
4 tháng 5 2019 lúc 19:15

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}=\frac{49}{50}\)

Bình luận (0)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\\ =1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\\ =1-\frac{1}{50}=\frac{49}{50}\)

Bình luận (0)